Degrees of Freedom & Constraints of Pulley & Spring System

  • Thread starter Thread starter ShayanJ
  • Start date Start date
  • Tags Tags
    Pulleys Spring
AI Thread Summary
The discussion focuses on the degrees of freedom and constraints in a pulley and spring system. It identifies two degrees of freedom: the angular rotation of the upper pulley and the angular rotation of the lower pulley. These rotations influence the spring's stretch and the movements of the attached masses. The constraints include the constancy of rope lengths and the relationship between angular velocities and mass velocities. The participants express clarity on the system's dynamics and appreciate the insights shared.
ShayanJ
Science Advisor
Insights Author
Messages
2,801
Reaction score
606
Consider the system shown in the picture.
http://updata.ir/images/m9wcnahubdfanhq9edok.jpg
What are its degrees of freedom?
And is the Lagrangian below,the correct one for this system?
<br /> \mathfrak{L}=\frac{1}{2} M_2 \dot{x}^2+\frac{1}{2}m_1\dot{x}_1^2+\frac{1}{2}m_2\dot{x}_2^2+\frac{1}{2}I_1\omega_1^2+\frac{1}{2}I_2\omega_2^2-\frac{1}{2}kx^2+M_2gx+m_1g(x+x_1)+m_2g(x+x_2)<br />
Where x is the distance from the center of the lower pulley to the static platform that the spring is connected to directly and x_1 and x_2 are the distances from masses to the center of the lower pulley and the Is are the moments of inertia of the pulleys and I have taken the lower platform to be the zero point for gravitational potential energy.
What are the constraints?
I can think of the constancy of the length of ropes and the relation between \omegas and the velocity of masses.But I have problem finding the relation between the change of length in the spring and the distance from the lower platform to the center of the lower pulley and I just assumed that they're equal.
Any idea is welcome.
Thanks
 
Last edited by a moderator:
Physics news on Phys.org
Hi Shyan,

I see only two degrees of freedom in the figure (adequate for establishing all the required features of the kinematics): The angular rotation of the upper pulley (as a function of time) and the angular rotation of the lower pulley (as a function of time).

The angular rotation of the upper pulley determines the amount of stretch of the spring, and it also determines how far down the center of the lower pulley moves.

The angular rotation of the lower pulley determines how far mass 1 moves downward and how far mass 2 moves upward relative to the center of the lower pulley.

I hope this helps.

Chet
 
Chestermiller said:
Hi Shyan,

I see only two degrees of freedom in the figure (adequate for establishing all the required features of the kinematics): The angular rotation of the upper pulley (as a function of time) and the angular rotation of the lower pulley (as a function of time).

The angular rotation of the upper pulley determines the amount of stretch of the spring, and it also determines how far down the center of the lower pulley moves.

The angular rotation of the lower pulley determines how far mass 1 moves downward and how far mass 2 moves upward relative to the center of the lower pulley.

I hope this helps.

Chet


Hi chet
Yeah,it was helpful...and after reading it,I was like: " Oohhh...Of course! "...I should have noticed it.But I think I was a little confused.
Thanks
 
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top