Telephone Wire with Load and Characteristic Impedance

The Head
Messages
137
Reaction score
2
Now w/ Attachment: Telephone Wire w/ Load and Characteristic Impedance

Homework Statement


Please see attachment.

Homework Equations


I(z)=I+(exp(-γz)) + I-(exp(γz))
V(z)=V+(exp(-γz)) + V-(exp(γz))


The Attempt at a Solution



I solved easily for the characteristic impedance and gamma (propagation constant), but am having a little difficulty putting all of the resistances together to set up the initial conditions. This is my logic so far:

Load Impedance is 300, total resistance due to the characteristic impedance is 4*100=400, gain impedance is 400. So is the total resistance in the circuit 1000? Or do I use my value of Z0 (characteristic impedance), which I found to be 502 - 37.4i. If so, then is the total resistance of the circuit 502+300+300? I also don't understand why the real part of the characteristic impedance doesn't equal the resistance per meter times the length.

Anyhow, then I figured if the peak voltage is 110, then the peak current is Vpeak/R-total=110/1000=0.11, or some other value, whatever ends up being the correct answer from the previous paragraph, but so I can ask my questions, let's say it's 0.11. The current will decay through the line due to the propagation constant. This is where I'm pretty sure I'm making an error.
I(z)=I+(exp(-γz)) + I-(exp(γz))= = If so,

These are my conditions:

V(0)= 110= V+ + V-

I(0)=V(0)/Z-total=110/1000=0.11= I+ + I-, so 0.11= V+ /Z0 - V+/Z0,

So V+ - V- = 0.11*Z0

Then I could just solve the system of equations and plug into the original. But surely I've made some poor assumptions along the way. Can you help? Thank you!
 

Attachments

  • physics.jpg
    physics.jpg
    30 KB · Views: 525
Last edited:
Physics news on Phys.org
Sorry, now the problem is attached.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top