f:(a,\infty)->R
i want to prove, that, if function is convex, then:
if exist x_1 \in R, exist x_2>x_1 : f(x_2)>f(x_1)
then:
for all x_3>x_2 for allx_4>x_3 : f(x_4)\ge f(x_3)\ge f(x_2)
in other words:
convex function is either decreasing on whole domain, or it starts to increase from some point...