Calculating Snowball Trajectories: Solving for Angle and Time

  • Thread starter Thread starter dizco29
  • Start date Start date
  • Tags Tags
    Angle
AI Thread Summary
The discussion focuses on calculating the trajectory of two snowballs thrown in a strategic manner during a snowball fight. The first snowball is thrown at a high angle of 70 degrees with a speed of 25.0 m/s, while the second needs to be thrown at a complementary angle of 20 degrees to reach the same horizontal distance. The timing for the second snowball to be thrown is determined to be 3.06 seconds after the first. Participants emphasize the importance of breaking down the problem into components and understanding the relationship between angles and displacement. The solution highlights the usefulness of complementary angles in projectile motion scenarios.
dizco29
Messages
32
Reaction score
0
Hey guys, have a few questions I was hoping you guys could help me out with.

*

4.13)******* One strategy in a snowball fight is to throw a snowball at a high angle over level ground. While your opponent is watching the first one, a second snowball is thrown at a low angle timed to arrive before or at the same time as the first one. Assume both snowballs are thrown at an angle of 70.0 degrees with respect to the horizontal. (a) at what angle should the second snowball be thrown to arrive at the same point as the first? (b) How many seconds later should the second snowball be thrown after the first to arrive at the same time?

What I did:

First I drew a digram and made a line represting the resultant (r) vector which is 25.00 m/s. I knew my angle, which is 70 degrees. from this, I'm able to use one of 4 formulas to find the components of r which = 25 degrees.

for velocity:
Vxi = (vi)(Cos)(angle)
Vyi = (vi)(Sin)(Angle) - gt

for displacement:
x = (vi)(Cos)(angle)(t)
y = (vi)(Sin)(angle)(t) - 1/2(g)t^2

so I solved the initial velocity for the x components, which was:
vxi=(25)(Cos)(70) = 8.5 m/s

and the y component

vyi= (25)(sin)(70) = 23.49 m/s

at this point, I tried a formula for the x component for displacement, and got:

8.5t

but I figured I could find time by using the y component seeing as how I know the snowball will be at 0 velocity at the max height. So I could use the kinematic equation vf = vi+at . so if I plug that in I get:

0 = 23.46 + (-9.8)t

-23.46/-9.8 = 2.3969 s

and I would have to x2 so that it covers the whole distance so the t = 4.793 s

now, if I plug that into the equation 8.5t , I would get :

8.5 (4.793) = 40.7405m

So now I know my displacement of snowball 1 (and I'm assuming for snowball 2)

Now at this point I'm stuck. I don't know what to do with the information I have to get the missing angle for snowball 2 and have no idea how to calculate what I need to launch snowball 2 for it to = the time for snowball one. Can anyone help?

I also had a comment about how the first question didn't make sense. I double-checked the question and it was exactly the way I stated above. I'm also going to do 3 posts as someone said it was confusing having all 3 in one post. Thanks
 
Last edited:
Physics news on Phys.org
The two angles that will reach the same horizontal range are complementary, meaning that they add up to 90 degrees.
 
oooh! So what you're saying is that my missing angle is 20 degrees for the second snowball? Is it really that easy? lol.
 
Oh Dan! You were absolutley right! I made a typo with the question. here's the question again but with the correction underlined. I must have missed it when I re-read the question!

4.13)******* One strategy in a snowball fight is to throw a snowball at a high angle over level ground. While your opponent is watching the first one, a second snowball is thrown at a low angle timed to arrive before or at the same time as the first one. Assume both snowballs are thrown with a speed of 25.0 m/s. The first one is thrown at an angle of 70.0 degrees with respect to the horizontal. (a) at what angle should the second snowball be thrown to arrive at the same point as the first? (b) How many seconds later should the second snowball be thrown after the first to arrive at the same time?
 
My students love the complementary argument because it saves them all the trouble of solving the problem. However, if you cannot make an excellent case to yourself on why that should be true, you shouldn't use it! Otherwise you may find yourself on a test facing a problem where you aren't sure if you can use it or not.

This problem is not tricky, but it does take a while to set up. Break everything into components and you'll end up with four sets of information - two for the first snowball (x & y), and two for the second. While you may be able to arrive at this solution quickly, don't always look for the easy way out. Take the time to solve for many of the variables, and as the puzzle pieces come into place you should eventually come to the variable you are being asked to solve.
 
k, I think I solved this one. I don't want to bother writing all my steps. I just want to check the answer. If it's wrong, don't tell me the answer, I'll post up the work if the answers are wrong.

So for a) it's 20 degrees (Because complemntary angles with the same intital speed arrive at the same displacement.

b)The second snowball will have to be thrown 3.06 seconds after the first one to arrive at the same time.



If it's wrong, I'll type out the steps

thnaks again!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top