2-d equations of motion for a Slinky going down stairs?

Click For Summary
The discussion centers on deriving the 2-D equations of motion for a Slinky descending stairs, emphasizing a planar motion without lateral movement. The initial approach considers fundamental physics equations like F = -kx and F = d(p)/dt, while recognizing the need for initial displacement. Participants note that the center of mass remains static during certain intervals, complicating the analysis. References to academic papers provide rigorous and simplified models of the Slinky's behavior under various conditions. The conversation highlights the intricate dynamics of a Slinky, suggesting that its motion can be mathematically complex.
benorin
Science Advisor
Insights Author
Messages
1,442
Reaction score
191
This problem fascinated me in lower division physics. Find the 2-d equations of motion for a Slinky going down a flight of stairs (assuming the path of the slinky is planar; eg only going up and down and front and back, no side to side). I do confess that whilst I do love physics I’m not terribly good at it, better with math. It’s been 20 years since physics but I still remember ##F=-kx ## seems a good place to start, or was it ##F=\tfrac{d\vec{p}}{dt}##? We’ll need some initial displacement of the slinky too. I’ll need some clues as to how to proceed... we’re going to wind up with a tweaked cycloid I bet?
 
Physics news on Phys.org
benorin said:
we’re going to wind up with a tweaked cycloid I bet?
I certainly would not expect that to be the case. Think about it. The center of mass, which is what you have to be looking for the motion of, is going to be static for noticeable periods while the top of the slinky moves forward and then again briefly as the top catches up on the next step down.
 
Slinkies can actually get super complicated, math-wise.
This paper has the most rigorous treatment that I know of, and includes discussions on the shapes formed by a slinky under various boundary conditions: https://arxiv.org/pdf/1403.6809.pdf

This paper from the American Journal of physics uses a simplified model of the slinky and a Lagrangian formalism to look at its stair-hopping behavior: https://aapt.scitation.org/doi/full/10.1119/1.3225921
 
  • Love
  • Informative
Likes vanhees71 and anorlunda
I built a device designed to brake angular velocity which seems to work based on below, i used a flexible shaft that could bow up and down so i could visually see what was happening for the prototypes. If you spin two wheels in opposite directions each with a magnitude of angular momentum L on a rigid shaft (equal magnitude opposite directions), then rotate the shaft at 90 degrees to the momentum vectors at constant angular velocity omega, then the resulting torques oppose each other...

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
17K
Replies
2
Views
7K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
1
Views
4K