2D Elastic Collision equations

AI Thread Summary
The discussion focuses on the equations governing 2D elastic collisions, emphasizing the principles of conservation of momentum and energy. Key equations are provided for momentum conservation in both the x and y directions, as well as the energy conservation equation, noting that for elastic collisions, kinetic energy loss (Q) is zero. The importance of understanding these principles is highlighted for solving collision problems effectively. Additionally, the user seeks resources for both 2D and 3D collision equations to aid in developing a collision simulation program. The mention of using Newton diagrams for geometric solutions to 2D collisions offers a practical approach to the topic.
vip4
Messages
4
Reaction score
0
Does anyone know the equations for 2D elastic collisions.
 
Physics news on Phys.org
Don't just learn the equations. Learn the principles behind those equations. You will always have conservation of momentum in any collision. For elastic collisions energy is also conserved. This will give you enough info the solve any collision problem, in principle anyway.
 
Conservation of momentum:

m_1 v_1 \cos \theta_1 + m_2 v_2 \cos \theta_2 = m_1 v_1^\prime \cos \theta_1^\prime + m_2 v_2^\prime \cos \theta_2^\prime

m_1 v_1 \sin \theta_1 + m_2 v_2 \sin \theta_2 = m_1 v_1^\prime \sin \theta_1^\prime + m_2 v_2^\prime \sin \theta_2^\prime

Conservation of energy:

\frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 = \frac{1}{2} m_1 {v_1^\prime}^2 + \frac{1}{2} m_2 {v_2^\prime}^2 + Q

where Q is the amount of kinetic energy lost in the collision (to "heat" or whatever). For an elastic collision, Q = 0.
 
Thanks for the reply galileo and jtbell. I have done a little reading on conservation of momentum and energy. I also search the internet for the equations and the theories involved in collisions. However i could only find 1D equations.

I would appreciate it if you could point me to any information that could help me to better understand it. I would also like any information on 3D collisions as well. The reason I'm trying to get this information is to write a computer program that simulates collisions.
 
I remember a neat way to solve 2D collision problems geometrically. Google for Newton diagrams.
 
This has been discussed many times on PF, and will likely come up again, so the video might come handy. Previous threads: https://www.physicsforums.com/threads/is-a-treadmill-incline-just-a-marketing-gimmick.937725/ https://www.physicsforums.com/threads/work-done-running-on-an-inclined-treadmill.927825/ https://www.physicsforums.com/threads/how-do-we-calculate-the-energy-we-used-to-do-something.1052162/
Thread 'Is 'Velocity of Transport' a Recognized Term in English Mechanics Literature?'
Here are two fragments from Banach's monograph in Mechanics I have never seen the term <<velocity of transport>> in English texts. Actually I have never seen this term being named somehow in English. This term has a name in Russian books. I looked through the original Banach's text in Polish and there is a Polish name for this term. It is a little bit surprising that the Polish name differs from the Russian one and also differs from this English translation. My question is: Is there...
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
Back
Top