zed123
- 1
- 0
helloo
while working on a combinatorics problem I have found the following result:
let A=(a_{ij})_{1\leq i,j\leq2n+1} where n is a positive integer , be a real Matrix such that :
i) a_{ij}^2=1-\delta_{ij} where \delta is the kronecker symbol
ii) \forall i \displaystyle{ \sum_{j=1}^{2n+1}a_{ij}=0}
then rankA=2n
any idea ?
while working on a combinatorics problem I have found the following result:
let A=(a_{ij})_{1\leq i,j\leq2n+1} where n is a positive integer , be a real Matrix such that :
i) a_{ij}^2=1-\delta_{ij} where \delta is the kronecker symbol
ii) \forall i \displaystyle{ \sum_{j=1}^{2n+1}a_{ij}=0}
then rankA=2n
any idea ?
Last edited: