Find t in a Parametric Equation

  • Thread starter Thread starter Jimerd
  • Start date Start date
  • Tags Tags
    Parametric
Jimerd
Messages
5
Reaction score
0

Homework Statement


Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point.

x = 6 cos t, y = 6 sin t, z = 6 cos 2t; (3√3, 3, 3)

Homework Equations





The Attempt at a Solution



So I understand that r(t)= 6cost t, 6sint, 6cos2t

and r'(t)= -6sint, 6cost, -12sin2t

So here is the questions, how do I find what the value of t is at points (3√3, 3, 3)
 
Physics news on Phys.org
Jimerd said:

Homework Statement


Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point.

x = 6 cos t, y = 6 sin t, z = 6 cos 2t; (3√3, 3, 3)

Homework Equations



The Attempt at a Solution



So I understand that r(t)= 6cost t, 6sint, 6cos2t

and r'(t)= -6sint, 6cost, -12sin2t

So here is the questions, how do I find what the value of t is at points (3√3, 3, 3)
Solve (6cost t, 6sint, 6cos2t) = (3√3, 3, 3) for t .
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top