Most efficient logic for 10 bit decoder

AI Thread Summary
A systematic approach to implementing a 10-bit decoder involves using two three-to-eight decoders and a four-to-sixteen line demultiplexer, which can then drive 1024 three-input NAND gates. For distributed systems, utilizing multiple four-to-sixteen decoders across different cards can effectively manage fanout and reduce propagation delay. Fanout considerations are crucial, particularly for driving multiple decoder inputs, with suggestions for buffering in TTL applications. The intended use of the output lines, such as enabling commands or sampling inputs, may influence design choices and simplifications. Overall, programmable logic may be a viable solution for compact implementations.
bsun2
Messages
1
Reaction score
0
Hello,
What is a good way to implement the logic for a 10 bit (10 to 1024) decoder? A method that is systematic, has low fanout, fanin, propogation delay, and capacitance is desired. It would be helpful if you could find some websites that implement this design.

Thanks,
James
 
Engineering news on Phys.org
To be sure, what are you looking for? An A to D converter, for example, or the logic to take a ten-line input and from it, select and enable one of 1024 output lines (that's awfully big)? If it's the latter, you can (simply) take two three-to-eight decoders, and a four-to-sixteen line demux, and feed the proper outputs of these to 1024 three-input NANDs (that's an awful lot of NANDs). For a distributed system, that wouldn't be too bad, but I don't think you'd want to derive that many signals in one place.

As an alternative, if it's distributed (for example, on thirty two cards, each putting out thirty two lines) you could, for example, put two four-to-sixteen line decoders on each, and include the proper select logic for each of the decoders.

Fan-out for the for the ten signal drive lines would be a consideration. Each of the four low-order lines would have to drive sixty four decoder inputs (possibly OK for CMOS, but I wouldn't want to try that directly with TTL; buffering would be needed - - probably at the both - input to each of the daughter boards and the output from the main board). This, by the way, is the type of problem typically encountered when designing memory arrays.

If it all has to be done from a single board or module, you might look to using some form of programmable logic.

KM
 
Another driving factor, is what do you intend to do with the output lines? If it is to drive something like a set of commands (on/off, etc.) or to enable sampling inputs (telemetry, etc.), considerations like those above are OK. If, however it is to drive something like a scanned LED display, etc., additional simplification might be possible.

KM
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...
Back
Top