- #1
- 6
- 0
Represent .999... by (1-10-n), limit as n>infinity.
Then
(1-10-n)10n, limit as n>infinity = 1/e (binomial expansion)
(1+10-n)10n, limit as n>infinity = e
(1)10n, limit as n>infinity=1
I think .999... is a transcendental number that can in almost every case be treated as equal to 1. Any solution to a finite algebraic equation that approximates 1 but is less than 1 will always be less than .999...
If .999... is transcendental then so is every other recurring decimal because they are arbitrarily close to a fraction but not equal to that fraction.
The above equation seems to converge with the number of digits of accuracy approximately equal to n.
Then
(1-10-n)10n, limit as n>infinity = 1/e (binomial expansion)
(1+10-n)10n, limit as n>infinity = e
(1)10n, limit as n>infinity=1
I think .999... is a transcendental number that can in almost every case be treated as equal to 1. Any solution to a finite algebraic equation that approximates 1 but is less than 1 will always be less than .999...
If .999... is transcendental then so is every other recurring decimal because they are arbitrarily close to a fraction but not equal to that fraction.
The above equation seems to converge with the number of digits of accuracy approximately equal to n.