Loxias
- 29
- 0
Homework Statement
A bead of mass m and charge q is placed on a frictionless, rigid rod that is spun
about at one end at a constant rate w on the xy plane. There is a constant magnetic
field in space B = B_0\hat{z}
Homework Equations
Write the Lagrangian for the system, use the generalized coordinate r (the
distance of the bead from the origin).
The Attempt at a Solution
I chose
<br /> x = rcos(wt) ,<br /> y = rsin(wt)<br />
and from
v = rw
we get
v = (wrcos(wt), wrsin(wt))
assuming vector potential
\vec{A} = B_0(0,x,0)
and L = \frac{1}{2}m V^2 + qV\vec{A}
I get
L = qB_0wr^2cos(wt)sin(wt) + \frac{1}{2}m (\dot{r}^2 +r^2w^2)
deriving equations of motion:
m\ddot{r} = mrw^2 + 2rB_0qwcos(wt)sin(wt)
which is good unit-wise.
My question is, did I derive everything right or did I forget something or misused the potential of magnetic field?
Thanks :)
Last edited: