First, make a substitution:
<br />
u = \sqrt{\cot(x)}.<br />
Then you will get an integral of a rational function. The denominator is u^{4} + 1. In order to factorize it, you will need all the complex fourth roots of -1. These are:
<br />
<br />
\begin{array}{rcl}<br />
<br />
e^{\iota \frac{\pi}{4}} & = & \frac{1 + \iota}{\sqrt{2}} \\<br />
<br />
e^{\iota \frac{3 \pi}{4}} & = & \frac{-1 + \iota}{\sqrt{2}} \\<br />
<br />
e^{\iotai \frac{5 \pi}{4}} & = & \frac{-1 - \iota}{\sqrt{2}} \\<br />
<br />
e^{\iota \frac{7 \pi}{4}} & = & \frac{1 - \iota}{\sqrt{2}}<br />
\end{array}<br />
i.e. you have 2 pairs of complex conjugate roots. Therefore:
<br />
u^{4} + 1 = (u^{2} + \sqrt{2}u + 1)(u^{2} - \sqrt{2}u + 1)<br />
From here, you should be able to proceed in the standard fashion.