1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

A contour integral

  1. Nov 4, 2009 #1
    1. The problem statement, all variables and given/known data

    Compute [tex]\int_{\alpha}^{\beta}{\left(\frac{\beta - x}{x-\alpha}\right)^{a-1} \frac{dx}{x}}[/tex] where [tex]0 \leq a \leq 2 [/tex] and [tex] 0 \leq \alpha \leq \beta [/tex].

    2. Relevant equations

    Cauchy's theorem, Residue theorem

    3. The attempt at a solution

    I'm confused about setting this up. If [tex] a \neq 1 [/tex], then the function is multi-valued and we'd need a branch cut - but I don't understand where to put this branch cut. Also, what about the case where [tex] a = 1 [/tex]? Does this mean that there is more than one answer, depending on what a is?

    Also, I can see that there is a simple pole at x=0 and some type of singularity at [tex] x=\alpha [/tex] (a pole of order a-1??) So, can I just use the Residue theorem once I figure out what contour to choose?
     
  2. jcsd
  3. Nov 4, 2009 #2
    Are you certain that a is not just an integer that can be 0, 1, or 2?
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: A contour integral
  1. Contour integral (Replies: 3)

  2. Contour integrals (Replies: 22)

  3. Contour integral (Replies: 1)

  4. Contour integration (Replies: 4)

  5. Contour integrals (Replies: 2)

Loading...