A problem with a Dirac delta function potential

arenaninja
Messages
25
Reaction score
0

Homework Statement


An ideal particle of energy E is incident upon a rectangular barrier of width 2a and height V_{0}. Imagine adjusting the barrier width and height so that it approaches V(x)=\alpha \delta(x). What is the relationship between V0, alpha and a?

Homework Equations




The Attempt at a Solution


I must be thinking of this incorrectly because the only thing that occurs to me is that in this limit,
V(x) = \alpha \delta (x), x = 0;<br /> V(x) = 0, elsewhere
and so
V_{0} = V(0) = \alpha \delta (0)
My issue is that this doesn't include the width at all (but I'm not sure why it should since the width goes to zero). Any insights are greatly appreciated.
 
Last edited:
Physics news on Phys.org
You could think of the Dirac delta function as the limiting case of a square pulse as the width of that pulse goes to zero, but the height goes to infinity (in such a way that the product of the two, which is the area of the pulse, remains constant and is always equal to unity). Does that help? It implies that the area under the scaled Dirac delta function in your problem must be the same as the area under the original square pulse.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top