The °C and K temperature scales have the same scale factor but a different zero. As T(K) = T(°C) + 273, if you increase T from 283 to 293 K, you increase it from 10°C to 20°C. The increase is 10 degrees in each case, because the scale factor is the same. If you are converting a temperature value (a point on the scale) from K to °C, you subtract 273. If you are converting a temperature difference in K to one in °C, the number is the same.
When you are considering heat capacity, you are considering the heat needed to change the temperature by a given amount. This temperature difference is the same in K or °C, so the heat capacity has the same value in J/kgK or J/kg°C. However, that does not mean that you can use temperature values in K or °C as you choose in the equation. The equation requires absolute temperatures, i.e. in a scale where the zero of the scale comes at absolute zero.
To give another example, T(°F) = 1.8*T(°C) + 32. Here there is both a zero offset and a different scale factor (1.8). This means a temperature difference of 10°C will be the same as a difference of 18°F. You often see in the news statements by reporters who know, e.g., that 10°C = 50°F, and will talk of a temperature of "-10°C (-50°F)" or "the temperature increased by 10°C (50°F)". Can you see why these are wrong?