A question on virtual antiparticles and Hawking Radiation

AI Thread Summary
Hawking Radiation arises from the separation of virtual particle pairs at a black hole's event horizon, where one particle can fall into the black hole while the other escapes. It is not always the antiparticle that falls in; instead, negative-energy particles, which can be either matter or antimatter, may enter the black hole. The process is influenced by tidal forces and the Heisenberg uncertainty principle, allowing particles to separate briefly. Inside the event horizon, the roles of energy and spatial momentum interchange, leading to the emission of a positive-energy particle outside the black hole. This explanation clarifies that the negative-energy particle that falls in is a virtual particle, while the escaping particle becomes a real particle with positive energy.
jacksonb62
Messages
21
Reaction score
0
I know that Hawking Radiation is caused by the separation of virtual particles on the event horizon of a black hole, but I do not understand why the antiparticle is always the particle from the pair that falls into the black hole. It seems to me that the gravitational effects of the black hole should effect both particles equally.
 
Astronomy news on Phys.org
I would like to know this as well.
 
jacksonb62 said:
I know that Hawking Radiation is caused by the separation of virtual particles on the event horizon of a black hole, but I do not understand why the antiparticle is always the particle from the pair that falls into the black hole. It seems to me that the gravitational effects of the black hole should effect both particles equally.

It isn't always the antiparticle that falls in. See
George Jones said:
Hawking radiation does not come about because antimatter particles sometimes fall into black holes; it comes about because negative-energy particles (both matter and animatter) sometimes fall into black holes. Some popular-level treatments of black holes obscure this, and even sometime get this completely wrong.

Steve Carlip has written a non-mathematical virtual particle description of Hawking radiation which is more challenging than most non-mathematical descriptions, but which also is more accurate than most non-mathematical descriptions.

http://www.physics.ucdavis.edu/Text/Carlip.html#Hawkrad

What happens, very roughly, is this. Energy is associated with time and spatial momentum is associated with space. When an matter-antimatter pair of virtual particles is created *outside* the event horizon, they can become a little bit separated in the time that the Heisenberg uncertainty principle allows them to live. Tidal forces caused by the curvature of spacetime help them to separate, and, sometimes, the negative-energy particle (which could be either matter or anitimatter) wanders over the event horizon and into the black hole. Inside the event horizon, the roles of time and space coordinates get interchanged. Thus, according to what I wrote above, the roles of energy and spatial momentum get interchanged. What was negative energy becomes a negative spatial component of a local (for an observer inside the horizon) momentum vector. Only a virtual particle can have negative energy, while any particle, real or virtual, can have a negative component of spatial momentum.

Bottom line: the whole process can become a real process. In this real process, an observer outside a black hole "sees" the black hole hole swallow a negative-energy particle while emiitting a positve energy particle (the other member of the matter-antmatter pair). The balck hole radiates.
 
The term 'negative' energy is used to express mathematical concepts. It should not be taken more seriously than any other such analogy.
 
Ok so no matter what particle falls into the event horizon, since it is a virtual particle, has negative energy? and the one that escapes becomes a real particle with positive energy? That makes more sense thank you
 
TL;DR Summary: In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect alien signals, it will further expand the radius of the so-called silence (or rather, radio silence) of the Universe. Is there any sense in this or is blissful ignorance better? In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect...
Thread 'Could gamma-ray bursts have an intragalactic origin?'
This is indirectly evidenced by a map of the distribution of gamma-ray bursts in the night sky, made in the form of an elongated globe. And also the weakening of gamma radiation by the disk and the center of the Milky Way, which leads to anisotropy in the possibilities of observing gamma-ray bursts. My line of reasoning is as follows: 1. Gamma radiation should be absorbed to some extent by dust and other components of the interstellar medium. As a result, with an extragalactic origin, fewer...
This thread is dedicated to the beauty and awesomeness of our Universe. If you feel like it, please share video clips and photos (or nice animations) of space and objects in space in this thread. Your posts, clips and photos may by all means include scientific information; that does not make it less beautiful to me (n.b. the posts must of course comply with the PF guidelines, i.e. regarding science, only mainstream science is allowed, fringe/pseudoscience is not allowed). n.b. I start this...
Back
Top