squelch
Gold Member
- 56
- 1
Homework Statement
Show that ##\vec{E}_x## on the axis of a ring charge [I'm assuming they meant "of charge Q"] of radius "r" has its maximum value at ##x=\pm \frac{r}{\sqrt{2}}##
Homework Equations
Linear charge density ##\lambda=\frac{Q}{2\pi R}##
##dQ=\lambda ds = \frac{Qd\theta}{2\pi}##
##\vec{E}=\frac{KQ}{R^2}##
The Attempt at a Solution
Let the distance between an infinitesimal sector of the ring with charge ##dQ## and a point ##P## be ##a##. Then ##a=\sqrt{x^2+r^2}## where r is the radius of the ring. Note that to save some typing, I will use ##a## and ##\sqrt{x^2+r^2}## interchangeably.
Let ##\theta## be the angle formed by a and the x axis, then:
##cos\theta=\frac{x}{a}=\frac{x}{\sqrt{x^2+r^2}}## and ##sin\theta=\frac{r}{a}=\frac{r}{\sqrt{x^2+r^2}}##
Now, ##d\vec{E}_y=0##, because all forces in the y-component cancel, leaving ##d\vec{E}_{total}=d\vec{E}_x=d\vec{E}cos\theta##
##\therefore d\vec{E}=\frac{KdQ}{a^2} cos\theta##
Because ##dQ= \frac{Qd\theta}{2\pi}## and ##cos\theta=\frac{x}{\sqrt{x^2+r^2}}##
##d\vec{E}=\frac{KQx}{2\pi a^3}d\theta##
Now, integrating from 0→2∏ to find ##\vec{E}##
$$\vec{E}=\frac{KQx}{2\pi a^3} \int_{0}^{2\pi} d\theta = \frac{KQx}{a^3} = \frac{KQx}{(x^2+r^2)^{3/2}}$$
From here, I'm not sure how to use this to "prove" that ##\vec{E}_x## has a maximum value at ##x=\pm \frac{r}{\sqrt{2}}##