Jianbing_Shao
- 127
- 2
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this:
$$
\partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}.
$$
The integrability conditions for the existence of a global solution ##F_{lj}## is:
$$
R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0
$$
Then from the equation:
$$\nabla_b e_a= \Gamma^c_{ab} e_c$$
Using cartesian basis ## e_I ## .## e_a(\mathbf{x}) = {e_a}^I(\mathbf{x}) e_I ##. We get:
$$
\partial_a \left( {e_b}^I(\mathbf{x}) \right) = {\Gamma^c}_{ab}(\mathbf{x}){e_c}^I(\mathbf{x}) ~~~~~~~(1)
$$
Combine with definition:
$$ g_{ab} = {e_a}^I {e_b}^J \eta_{IJ} $$
Thenwe can get metric compatible equation:
$$
\partial_c g_{ab}-{\Gamma^e}_{ca}g_{e b}-{\Gamma^e}_{cb}g_{ae}=0~~~~~(2)
$$
From the theorem above, the integrability condition of equation (1) is ##R({\Gamma^c}_{ab}(\mathbf{x}))=0##. Then we can find a global solution ##{e_b}^I(\mathbf{x})## satisfying the equation. So the metric field ## g_{ab} = {e_a}^I {e_b}^J \eta_{IJ} ## is also a global solution to equation (2). And ## g_{ab}## can be a non-flat metric.
So we can draw a conclusion: non-flat metric ##g_{ab}## is compatible with a zero curvature connection ##{\Gamma^c}_{ab}={e^c}_I \partial_a {e_b}^I ##. Then how to explain this conclusion? A non-flat metric space can also have zero curvature?
$$
\partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}.
$$
The integrability conditions for the existence of a global solution ##F_{lj}## is:
$$
R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0
$$
Then from the equation:
$$\nabla_b e_a= \Gamma^c_{ab} e_c$$
Using cartesian basis ## e_I ## .## e_a(\mathbf{x}) = {e_a}^I(\mathbf{x}) e_I ##. We get:
$$
\partial_a \left( {e_b}^I(\mathbf{x}) \right) = {\Gamma^c}_{ab}(\mathbf{x}){e_c}^I(\mathbf{x}) ~~~~~~~(1)
$$
Combine with definition:
$$ g_{ab} = {e_a}^I {e_b}^J \eta_{IJ} $$
Thenwe can get metric compatible equation:
$$
\partial_c g_{ab}-{\Gamma^e}_{ca}g_{e b}-{\Gamma^e}_{cb}g_{ae}=0~~~~~(2)
$$
From the theorem above, the integrability condition of equation (1) is ##R({\Gamma^c}_{ab}(\mathbf{x}))=0##. Then we can find a global solution ##{e_b}^I(\mathbf{x})## satisfying the equation. So the metric field ## g_{ab} = {e_a}^I {e_b}^J \eta_{IJ} ## is also a global solution to equation (2). And ## g_{ab}## can be a non-flat metric.
So we can draw a conclusion: non-flat metric ##g_{ab}## is compatible with a zero curvature connection ##{\Gamma^c}_{ab}={e^c}_I \partial_a {e_b}^I ##. Then how to explain this conclusion? A non-flat metric space can also have zero curvature?