A Theorem on Squares and Congruences

  • Thread starter Thread starter middleCmusic
  • Start date Start date
  • Tags Tags
    Squares Theorem
middleCmusic
Messages
74
Reaction score
0
Hey guys --

I was wondering whether the following theorem was already established, or if it was something novel. I couldn't find it in my abstract algebra textbook and a Google search was not productive ("a list of congruence theorems" just turns up elementary geometry theorems on triangle congruences.)

Thm For any n in ℕ, if a+b=n, then a2 ≡ b2 (mod n).

Proof: Let a+b=n. Then a=b-n.

a2 = (b-n)2 = b2 - 2bn + n2 = b2 - n*(2b)+n) ≡ b2 (mod n)
 
Physics news on Phys.org
middleCmusic said:
Hey guys --

I was wondering whether the following theorem was already established, or if it was something novel. I couldn't find it in my abstract algebra textbook and a Google search was not productive ("a list of congruence theorems" just turns up elementary geometry theorems on triangle congruences.)

Thm For any n in ℕ, if a+b=n, then a2 ≡ b2 (mod n).

Proof: Let a+b=n. Then a=b-n.

a2 = (b-n)2 = b2 - 2bn + n2 = b2 - n*(2b)+n) ≡ b2 (mod n)



Well, this is a trivial statement. Observe (and this also serves as a proof) that

$$a^2=b^2\pmod n\Longleftrightarrow (a-b)(a+b)=0\pmod n$$

so if \,a+b=0\pmod n\, then we can go leftwards in the above and get the result.

DonAntonio
 
Thanks DonAntonio for your explanation.

I agree that it is a rather trivial result, but I thought it was "nice" in a way. Just curious if it's already been proven/noticed. (Perhaps no one thought to write it down because it is so trivial and it's relegated instead to the Exercises section of some introductory textbook.) Please forgive me if I'm writing the equivalent of "Hey guys, I discovered that the sky is blue!" but I'm only an undergraduate and my breadth of knowledge is still pretty thin.
 
Yes, this has certainly been proven before. However, it's great that you're discovering little results like this own your own--keep it up!
 
A. Bahat said:
Yes, this has certainly been proven before. However, it's great that you're discovering little results like this own your own--keep it up!

Thanks for the encouragement!
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
14
Views
3K
Replies
2
Views
2K
Replies
3
Views
5K
3
Replies
114
Views
10K
2
Replies
71
Views
12K
Replies
125
Views
19K
Back
Top