A Theoretical Treatment of Technical Risk in Modern Propulsion System Design

AI Thread Summary
Modern aerospace systems face increasing complexity and cost, necessitating formal methods to analyze technical risk in vehicle design. This dissertation by Bryce Alexander Roth introduces a methodology that assesses risk through a comprehensive examination of aerothermodynamic and mass properties. Utilizing recent advancements in work potential estimation based on thermodynamics, the study validates its approach with the Northrop F-5E and GE J85-GE-21 engines. Key figures of merit, including exergy and thrust work potential, are employed to analyze thermodynamic losses and fuel work potential, revealing critical insights for design improvements. The methodology also integrates loss management with probabilistic analysis to evaluate the impact of risk on performance, demonstrating its broad applicability in propulsion system design.
Astronuc
Staff Emeritus
Science Advisor
Gold Member
Messages
22,340
Reaction score
7,138
http://www.asdl.gatech.edu/teams/prop/roth_pub/roth_thesis.pdf
(use save target as if speed limited)

PhD Dissertation

Bryce Alexander Roth

A prevalent trend in modern aerospace systems is increasing complexity and cost, which in turn drives increased risk. Consequently, there is a clear and present need for the development of formalized methods to analyze the impact of risk on the design of aerospace vehicles. The objective of this work is to develop such a method that enables analysis of risk via a consistent, comprehensive treatment of aerothermodynamic and mass properties aspects of vehicle design.

The key elements enabling the creation of this methodology are recent developments in the analytical estimation of work potential based on the second law of thermodynamics. This dissertation develops the theoretical foundation of a vehicle analysis method based on work potential and validates it using the Northrop F-5E with GE J85-GE-21 engines as a case study. Although the method is broadly applicable, emphasis is given to aircraft propulsion applications.

Three work potential figures of merit are applied using this method: exergy, available energy, and thrust work potential. It is shown that each possesses unique properties making them useful for specific vehicle analysis tasks, though the latter two are actually special cases of exergy. All three are demonstrated on the analysis of the J85-GE-21 propulsion system, resulting in a comprehensive description of propulsion system thermodynamic loss. This “loss management” method is used to analyze aerodynamic drag loss of the F-5E and is then used in conjunction with the propulsive loss model to analyze the usage of fuel work potential throughout the F-5E design mission. The results clearly show how and where work potential is used during flight and yield considerable insight as to where the greatest opportunity for design improvement is. Next, usage of work potential is translated into fuel weight so that the aerothermodynamic performance of the F-5E can be expressed entirely in terms of vehicle gross weight. This technique is then applied as a means to quantify the impact of engine cycle technologies on the F-5E airframe. Finally, loss management methods are used in conjunction with probabilistic analysis methods to quantify the impact of risk on F-5E aerothermodynamic performance.
 
Last edited by a moderator:
Engineering news on Phys.org
Thanks Astro. I downloaded that. I hope to get a chance to read it this weekend.
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Back
Top