A About Schur's lemma in lie algebra

HDB1
Messages
77
Reaction score
7
Please, I have a question about Schur's Lemma ;

Let $\phi: L \rightarrow g I((V)$ be irreducible. Then the only endomorphisms of $V$ commuting with all $\phi(x)(x \in L)$ are the scalars.

Could you explain it, and please, how we can apply this lemma on lie algebra ##L=\mathfrak{s l}(2)##thanks in advance, :heart:
 
Physics news on Phys.org
Dear @fresh_42 , If you could help, I would appreciate it, thanks in advance, :heart: :heart:
 
HDB1 said:
Please, I have a question about Schur's Lemma ;

Let $\phi: L \rightarrow g I((V)$ be irreducible. Then the only endomorphisms of $V$ commuting with all $\phi(x)(x \in L)$ are the scalars.

Could you explain it, and please, how we can apply this lemma on lie algebra ##L=\mathfrak{s l}(2)##thanks in advance, :heart:
It says if ##\varphi \, : \,V\longrightarrow V## is a linear transformation of the vector space ##V## and ##\phi\, : \, L \rightarrow \mathfrak{gl}(V)## an irreducible representation of the Lie algebra ##L## then
\begin{align*}
[\phi(X),\varphi ](v)&=(\phi(X)\cdot \varphi -\varphi \cdot \phi(X))(v)=\phi(X).\varphi (v)-\varphi (\phi(X).v)=0 \text{ for all }X\in L\\ &\Longrightarrow \\
\varphi(v)&=\lambda \cdot v\text{ for some }\lambda \in \mathbb{K}
\end{align*}

Note:
a) ##\varphi \in \operatorname{End}(V)=\mathfrak{gl}(V)##
b) ##\{\alpha \in \mathfrak{gl}(V)\,|\,[\alpha,\beta]=0\text{ for all }\beta\in \mathfrak{gl}(V)\}=Z(\mathfrak{gl}(V)).##
c) Schur's lemma can therefore be phrased as follows:

A linear transformation ##\varphi ## of a finite-dimensional representation space ##V## of an irreducible representation ##\phi## of a Lie algebra ##L,## i.e. ##V## is an irreducible ##L## module, that lies in the center of ##\mathfrak{gl}(V)## is a scalar multiple of the identity matrix.

Consider the case ##L=\mathfrak{sl}(2)\, , \,V_2=\mathbb{K}^2## with ##x.v=[x,v]## being the Lie multiplication of ##\mathfrak{sl}(2)\ltimes V_2## we have seen before, will say: ##x.v## is the multiplication of a matrix ##x\in \mathfrak{sl}(2)## and a vector ##v\in V_2.## This is an irreducible representation, since ##V_2## has no one-dimensional submodule ##U=\mathbb{K}u## such that ##x.u \in U## for every ##x\in \mathfrak{sl}(2).## (Prove it!)

So all conditions of Schur's lemma are fulfilled. Now, if we have a matrix ##\varphi = A= \begin{pmatrix}a&b\\c&d\end{pmatrix}\in \mathfrak{gl}(V_2)## such that
$$
0=[\phi(X),A]=[X,A]=X\cdot A- A\cdot X\text{ for all } X\in \mathfrak{sl}(2) \;\;\Longleftrightarrow \;\;AX=XA
$$
then ##A=\lambda \cdot \begin{pmatrix}1&0\\0&1\end{pmatrix}## for some ##\lambda \in \mathbb{K}.##

You can check this yourself. Prove:
$$
\begin{pmatrix}a&b\\c&d\end{pmatrix}\cdot \begin{pmatrix}h&x\\y&-h\end{pmatrix}=\begin{pmatrix}h&x\\y&-h\end{pmatrix}\cdot \begin{pmatrix}a&b\\c&d\end{pmatrix} \text{ for all }x,h,y\;\;\Longrightarrow \;\;b=c=0 \text{ and }a=d
$$
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
15
Views
3K
Replies
19
Views
3K
Replies
5
Views
2K
Replies
19
Views
3K
Replies
7
Views
2K
Replies
4
Views
3K
Replies
4
Views
2K
Replies
4
Views
2K
Back
Top