About Schur's lemma in lie algebra

Click For Summary
SUMMARY

Schur's Lemma states that for an irreducible representation $\phi: L \rightarrow \mathfrak{gl}(V)$ of a Lie algebra $L$, the only endomorphisms of the vector space $V$ that commute with all transformations $\phi(x)$ (where $x \in L$) are scalar multiples of the identity. This is particularly applicable to the Lie algebra $L = \mathfrak{sl}(2)$, where it can be demonstrated that any linear transformation $\varphi$ in the center of $\mathfrak{gl}(V)$ must also be a scalar multiple of the identity matrix. The discussion emphasizes the irreducibility of the representation and provides a proof framework for the lemma using specific matrix forms.

PREREQUISITES
  • Understanding of Lie algebras, specifically $\mathfrak{sl}(2)$
  • Familiarity with linear transformations and endomorphisms in vector spaces
  • Knowledge of irreducible representations in the context of algebra
  • Basic linear algebra concepts, including matrix multiplication and commutation
NEXT STEPS
  • Study the properties of irreducible representations of Lie algebras
  • Learn about the structure and applications of $\mathfrak{gl}(V)$ and its center
  • Explore examples of Schur's Lemma in various Lie algebras
  • Investigate the implications of Schur's Lemma in representation theory and physics
USEFUL FOR

Mathematicians, physicists, and students studying representation theory, particularly those focusing on Lie algebras and their applications in theoretical physics.

HDB1
Messages
77
Reaction score
7
Please, I have a question about Schur's Lemma ;

Let $\phi: L \rightarrow g I((V)$ be irreducible. Then the only endomorphisms of $V$ commuting with all $\phi(x)(x \in L)$ are the scalars.

Could you explain it, and please, how we can apply this lemma on lie algebra ##L=\mathfrak{s l}(2)##thanks in advance, :heart:
 
Physics news on Phys.org
Dear @fresh_42 , If you could help, I would appreciate it, thanks in advance, :heart: :heart:
 
HDB1 said:
Please, I have a question about Schur's Lemma ;

Let $\phi: L \rightarrow g I((V)$ be irreducible. Then the only endomorphisms of $V$ commuting with all $\phi(x)(x \in L)$ are the scalars.

Could you explain it, and please, how we can apply this lemma on lie algebra ##L=\mathfrak{s l}(2)##thanks in advance, :heart:
It says if ##\varphi \, : \,V\longrightarrow V## is a linear transformation of the vector space ##V## and ##\phi\, : \, L \rightarrow \mathfrak{gl}(V)## an irreducible representation of the Lie algebra ##L## then
\begin{align*}
[\phi(X),\varphi ](v)&=(\phi(X)\cdot \varphi -\varphi \cdot \phi(X))(v)=\phi(X).\varphi (v)-\varphi (\phi(X).v)=0 \text{ for all }X\in L\\ &\Longrightarrow \\
\varphi(v)&=\lambda \cdot v\text{ for some }\lambda \in \mathbb{K}
\end{align*}

Note:
a) ##\varphi \in \operatorname{End}(V)=\mathfrak{gl}(V)##
b) ##\{\alpha \in \mathfrak{gl}(V)\,|\,[\alpha,\beta]=0\text{ for all }\beta\in \mathfrak{gl}(V)\}=Z(\mathfrak{gl}(V)).##
c) Schur's lemma can therefore be phrased as follows:

A linear transformation ##\varphi ## of a finite-dimensional representation space ##V## of an irreducible representation ##\phi## of a Lie algebra ##L,## i.e. ##V## is an irreducible ##L## module, that lies in the center of ##\mathfrak{gl}(V)## is a scalar multiple of the identity matrix.

Consider the case ##L=\mathfrak{sl}(2)\, , \,V_2=\mathbb{K}^2## with ##x.v=[x,v]## being the Lie multiplication of ##\mathfrak{sl}(2)\ltimes V_2## we have seen before, will say: ##x.v## is the multiplication of a matrix ##x\in \mathfrak{sl}(2)## and a vector ##v\in V_2.## This is an irreducible representation, since ##V_2## has no one-dimensional submodule ##U=\mathbb{K}u## such that ##x.u \in U## for every ##x\in \mathfrak{sl}(2).## (Prove it!)

So all conditions of Schur's lemma are fulfilled. Now, if we have a matrix ##\varphi = A= \begin{pmatrix}a&b\\c&d\end{pmatrix}\in \mathfrak{gl}(V_2)## such that
$$
0=[\phi(X),A]=[X,A]=X\cdot A- A\cdot X\text{ for all } X\in \mathfrak{sl}(2) \;\;\Longleftrightarrow \;\;AX=XA
$$
then ##A=\lambda \cdot \begin{pmatrix}1&0\\0&1\end{pmatrix}## for some ##\lambda \in \mathbb{K}.##

You can check this yourself. Prove:
$$
\begin{pmatrix}a&b\\c&d\end{pmatrix}\cdot \begin{pmatrix}h&x\\y&-h\end{pmatrix}=\begin{pmatrix}h&x\\y&-h\end{pmatrix}\cdot \begin{pmatrix}a&b\\c&d\end{pmatrix} \text{ for all }x,h,y\;\;\Longrightarrow \;\;b=c=0 \text{ and }a=d
$$
 
  • Like
Likes   Reactions: HDB1

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K