How Do Absolute Value Inequalities Apply to Different Sign Scenarios?

AI Thread Summary
The discussion focuses on proving the properties of absolute value inequalities |a+b|≤|a|+|b| and |a+b|≥|a|-|b| under different sign scenarios for a and b. When both a and b are positive, the inequalities hold true as |a+b| equals |a| + |b|. For a and b both negative, the absolute values become negative, leading to |a+b| being equal to -a - b. In the case where a is positive and b is negative, the outcome depends on the relative magnitudes of |a| and |b|, resulting in two sub-cases. Overall, understanding these inequalities requires careful consideration of the signs and magnitudes of a and b.
wonnabewith
Messages
4
Reaction score
0

Homework Statement


I was trying to show that
1) |a+b|≤|a|+|b|
2) |a+b|≥|a|-|b|
and find out how they were true when a,b>0, a,b<0, and a>0,b<0

Homework Equations


1) |a+b|≤|a|+|b|
2) |a+b|≥|a|-|b|

The Attempt at a Solution


For |a+b|≤|a|+|b|
a,b>0
I got that |a+b|=a+b
|a|+|b|=a+b
so |a+b|=|a|+|b|
but I was confused when I was trying to solve when a,b<0, and a>0,b<0
please help!
 
Last edited:
Physics news on Phys.org
What were your problems? What did you try?
 
wonnabewith said:

Homework Statement


I was trying to show that
1) |a+b|≤|a|+|b|
2) |a+b|≥|a|-|b|
and find out how they were true when a,b>0, a,b<0, and a>0,b<0

Homework Equations


1) |a+b|≤|a|+|b|
2) |a+b|≥|a|-|b|

The Attempt at a Solution


For |a+b|≤|a|+|b|
a,b>0
I got that |a+b|=a+b
|a|+|b|=a+b
so |a+b|=|a|+|b|
but I was confused when I was trying to solve a,b<0, and a>0,b<0
please help!
If a and b are both less than 0, then so is a+ b.
|a|= -a, |b|= -b, |a+ b|= -(a+ b)= -a- b.

If one of a> 0 and b< 0, there are still two cases: |a|> |b| or |a|< |b|.
If |a|> |b| then a+ b= a-(-b)> 0 so |a+ b|= a+ b= |a|- |b|
 
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks
Essentially I just have this problem that I'm stuck on, on a sheet about complex numbers: Show that, for ##|r|<1,## $$1+r\cos(x)+r^2\cos(2x)+r^3\cos(3x)...=\frac{1-r\cos(x)}{1-2r\cos(x)+r^2}$$ My first thought was to express it as a geometric series, where the real part of the sum of the series would be the series you see above: $$1+re^{ix}+r^2e^{2ix}+r^3e^{3ix}...$$ The sum of this series is just: $$\frac{(re^{ix})^n-1}{re^{ix} - 1}$$ I'm having some trouble trying to figure out what to...
Back
Top