Abstract Algebra: Ring Isomorphism Construction

lola1990
Messages
30
Reaction score
0

Homework Statement


Homework Equations


The Attempt at a Solution

 
Last edited:
Physics news on Phys.org
Do you know the chinese remainder theorem??
 
What bothers you about it??
 
lola1990 said:
So I already proved that I+J=R, so that there are x in I and y in J such that x+y=1. Then, f(x)=(I, 1+J) because x is in I and x=1-y which is in 1+B. Similarly, f(y)=(1+I, J). Now, consider kx+ry. f(kx+ry)=f(k)f(x)+f(r)f(y)=(k+I, k+J)(I, 1+J)+(r+I, r+J)(1+I, J)=(I, k+J)+(r+I)(J)=(r+I)(k+J). Is that right?

The bolded part have a wrong notation. It must be (r+I,J) and (r+I,k+J). But it is correct.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Back
Top