Acceleration of a Rotational Sphere on an Inclined Plane

AI Thread Summary
The discussion focuses on understanding the acceleration of a solid sphere rolling down an inclined plane with static friction. The key equations involve the forces acting on the sphere, including gravitational force components and the torque due to static friction. The correct formula for the acceleration of the center of mass is derived as a = gsinθ - μgcosθ, which accounts for both gravitational pull and frictional force. The confusion arises from the misapplication of the moment of inertia and the role of static versus kinetic friction. Ultimately, recognizing that the question specifically asks for the center of mass acceleration clarifies the solution.
einstein18
Messages
5
Reaction score
0
Ok, I am trying to understand this problem on my practice exam and I can't figure out what I am doing wrong.

Homework Statement


A solid sphere of mass M and radius R is released from rest on an inclined plane with an angle of θ. The coefficient of static friction for the sphere on the plane is μs. Assuming that the sphere rolls without slipping down the plane and that the static frictional force is at its maximum value, which of the following is the correct equation for the acceleration of the center of mass of the sphere?

Homework Equations


Since it is static friction and the sphere doesn't slip:
X-axis: Mgsinθ = Fstatic
Y-axis: Mgcosθ = N
Torque: Fstatic*R = I*alpha
alpha = a/R
I of solid sphere = (2/5)MR^2

The Attempt at a Solution


Simplifying the torque equation and making substituitions:
a = Fstatic*R^2 / I -> a = (μMgcosθ)R^2 / (2/5)MR^2 ->

a = μgcosθ/(2/5)

However, the answer is: a = gsinθ - μgcosθ

I see where the gsinθ comes from but I don't understand why its there if μ is static.
Also the thing that is confusing me the most, where does (2/5) go?

Any help would be greatly appreciated,
thanks in advance!
 
Physics news on Phys.org
I just realized that if I solve for the X-axis equation i get the answer:

mgsinθ - f = ma
a = gsinθ - μgcosθ

But this is only true if the friction were kinetic. Also where does the rotational aceleration go?
 
Oh! The question asks for the equation of the acceleration of the center of mass of the sphere. Doh. I can't believe i just spent the past hour trying to figure this out...
 
Einstein eh :P
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top