Acceleration of a tank leaking water

  • Thread starter Thread starter guv
  • Start date Start date
  • Tags Tags
    Tank Water
Click For Summary
The discussion revolves around the acceleration of a tank leaking water, with participants debating the validity of two proposed solutions. The first solution is favored for its correctness, while the second suggests that the tank accelerates despite the water leak. A key point raised is that the second solution misapplies the momentum equation, assuming that leaked water does not carry away momentum. This misinterpretation leads to incorrect conclusions about the system's dynamics. Overall, the conversation emphasizes the importance of correctly applying physical principles to analyze the problem.
guv
Messages
122
Reaction score
22
Homework Statement
A tank stores water on the inside. Initially the total mass of the
tank and water is ##M##. A constant horizontal force ##F## to the right is applied on the
tank while water starts leaking out at constant rate ##r## (measured
in kilograms/second). Assume the leaked water is momentarily at
rest with respect to the tank and it's leaked from the left side
of the tank.

Determine the acceleration of the tank as a function of time. Ignore all forms of friction and assume the tank moves on a horizontal surface.
Relevant Equations
$$a = \frac{F}{M - rt}$$
$$\vec F = \frac{d (m \vec v)}{dt} = \frac{d m}{dt} \vec v + m \frac{d \vec v}{dt} = - r \vec v + (M - rt) \vec a $$
I would think the first solution is correct but the provided solution to this problem suggests the 2nd solution. Let me know what you guys think about this. Thanks,
 
Physics news on Phys.org
guv said:
Let me know what you guys think about this.
I think that you might profit by reading this insight article that was written specifically to guide one's thinking about problems of this kind.
 
guv said:
I would think the first solution is correct
Quite so.
This can easily be seen by setting ##F=0, v_0>0##. According to the second solution, the tank accelerates.
The trouble with ##F=\frac{d(mv)}{dt}## is that it only applies to a closed system of masses. The way it has been used in the second equation is as though the leaked water has carried away no momentum with it, imparting all the momentum it had to the tank and the water remaining in it.
 
  • Like
Likes Tomy World and guv
Thread 'Correct statement about size of wire to produce larger extension'
The answer is (B) but I don't really understand why. Based on formula of Young Modulus: $$x=\frac{FL}{AE}$$ The second wire made of the same material so it means they have same Young Modulus. Larger extension means larger value of ##x## so to get larger value of ##x## we can increase ##F## and ##L## and decrease ##A## I am not sure whether there is change in ##F## for first and second wire so I will just assume ##F## does not change. It leaves (B) and (C) as possible options so why is (C)...

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 22 ·
Replies
22
Views
3K
Replies
60
Views
6K
  • · Replies 21 ·
Replies
21
Views
807
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 11 ·
Replies
11
Views
4K
Replies
7
Views
3K
  • · Replies 11 ·
Replies
11
Views
633
  • · Replies 2 ·
Replies
2
Views
1K