Acceleration of Bar in Circuit with Magnetic Field

AI Thread Summary
The discussion centers on calculating the acceleration of a metal bar in a magnetic field after closing a switch in a circuit. The bar has a weight of 2.60 N and a resistance of 10.0 Ω, with a magnetic field strength of 1.60 T. Participants clarify that the net force equation should focus only on horizontal components, as gravity does not affect horizontal motion. The current through the bar is determined to be 2.0 A, leading to the conclusion that the acceleration can be simplified to a = IlB/m without considering the weight force. This understanding resolves confusion regarding the application of Newton's Second Law in this context.
Mysterious
Messages
5
Reaction score
0

Homework Statement


A 2.60-N metal bar, 1.50 m long and having a resistance of 10.0 Ω, rests horizontally on conducting wires connecting it to the circuit shown below. The bar is in a uniform, horizontal, 1.60-T magnetic field and is not attached to the wires in the circuit. What is the acceleration of the bar just after the switch S is closed?

OI9ZbAl.jpg


Homework Equations


Well, the magnetic force of a straight wire is valid here.
F = IlB‎sin‎Ø

And Newton's Second Law as well. Fnet = ma.
So combining the two equations, I get IlBsin‎Ø - mg = ma and thus a = (IlBsin‎Ø - mg)/m.

Also, since we have the potential difference of the source, ε = IR is valid as well.

The Attempt at a Solution


The equivalent of the parallel resistors in 5.0 Ω and the total (equivalent of the series) is 30.0 Ω.
From that,
ε = IR
I = ε/R
I = (120 V)/(30 Ω)
I = 4.0 A

And the path splits in two before it reaches the bar, so the current that will pass through the bar is 2.0 A.

However, the application of N2L is confusing me. We are not given either the mass of the bar or the acceleration; just the net force of the bar (2.60-N). How do I determine the mass to use in N2L and ultimately obtain the acceleration?

Thanks.
 
Physics news on Phys.org
Mysterious said:
However, the application of N2L is confusing me. We are not given either the mass of the bar or the acceleration; just the net force of the bar (2.60-N). How do I determine the mass to use in N2L and ultimately obtain the acceleration?
I'm going to assume the 2.60 N is the weight of the bar. Knowing the gravitational acceleration of whatever planet the circuit is on (surface of Earth is probably a safe bet) should give you the mass of the bar.
 
milesyoung said:
I'm going to assume the 2.60 N is the weight of the bar. Knowing the gravitational acceleration of whatever planet the circuit is on (surface of Earth is probably a safe bet) should give you the mass of the bar.

That makes sense. However, it doesn't explain why the solutions manual does not consider the weight force of the bar when applying's N2L:

They solve
a = IlB/m
where m = 2.60 N/9.80 m/s^2 as you said. But I don't understand why it is not a = (IlB - mg)/m.
 
It's implied that the bar is restricted to horizontal movement. Gravity has no horizontal component, so it doesn't contribute to the net force acting on the bar in the horizontal direction.
 
milesyoung said:
It's implied that the bar is restricted to horizontal movement. Gravity has no horizontal component, so it doesn't contribute to the net force acting on the bar in the horizontal direction.

That makes perfect sense. Thank you so much.
 
You're welcome. Consider also that in Newton's second law:
<br /> \mathbf{F} = m \mathbf{a} \quad (1)<br />
##\mathbf{F}## and ##\mathbf{a}## are vectors, but we can express (1) component-wise as:
<br /> \begin{align}<br /> F_x &amp;= m a_x \quad (2)\\<br /> F_y &amp;= m a_y \quad (3)<br /> \end{align}<br />
where x and y subscripts refer to horizontal and vertical components, respectively.

In your example, we know that ##a_y## is zero due to physical restrictions, so we're really only concerned with (2). I hope you can see why:
Mysterious said:
a = (IlB - mg)/m
mixes up (2) and (3).
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top