Addition of angular momentum - Finding the second tower states

DataGG
Gold Member
Messages
157
Reaction score
22

Homework Statement



I'm supposed to calculate all the states for a system with ##l=1## and ##s=1/2##. Let's say ##\vec{J} = \vec{L} + \vec{S}##. I want to find the Klebsch-Gordon coefficients.

I know that said system has 2 towers, one with ##j=3/2## and the other with ##j=1/2##. I've calculated all the states for ##j=3/2## but now I'm having some problems with ##j=1/2##.

So, for the second tower, we've two states: ##|j,j_z>=|1/2, 1/2>## and ##|j,j_z>=|1/2, -1/2>##

How am I supposed to find ##|j,j_z>=|1/2, 1/2>##? If I do that, finding ##|j,j_z>=|1/2, -1/2>## should be easily done by applying the ##J _## operator.

Homework Equations



$$J _ |j, j_z>=\hbar \sqrt{j(j+1)-j_z(j_z-1)}|j,j_z-1>$$
$$S _ |s, s_z>=\hbar \sqrt{s(s+1)-s_z(s_z-1)}|s,s_z-1>$$
$$L _ |j, j_z>=\hbar \sqrt{l(l+1)-l_z(l_z-1)}|l,l_z-1>$$

The Attempt at a Solution



Well, I've done well for the tower with ##j=3/2##. Now with this second tower, I don't know where to begin from. I think this is because for ##j = j_z = 3/2##, we know that ##j_z = l_z + s_z## which means ##l_z =1 ## and ##s_z = 1/2##. There's no other way.

For the case with ##j=1/2##, we've two options. ## l_z=0, s_z=1/2##, which is to say ##|l_z,s_z>=|0, 1/2> ## and ##l_z=1, s_z=-1/2##, which is to say ##|l_z,s_z>=|1, -1/2>##. Should I sum those states somehow?
 
Last edited:
Physics news on Phys.org
You already know that one of the jz = 1/2 states is part of the j=3/2 representation. Since there are only two of those, which is the remaining one?
 
Orodruin said:
You already know that one of the jz = 1/2 states is part of the j=3/2 representation. Since there are only two of those, which is the remaining one?

I'm not sure I understand what you're saying.. I know that, for ##j_z = 1/2## there's two states. One being for ##j=3/2## and the other for ##j=1/2##. That is:

##|j, j_z> = |3/2, 1/2>## and ##|j, j_z> = |1/2, 1/2>##. Now I need to write this last state using ##l_z## and ##s_z##, in order to find the Klebsch-Gordon coefficients.
 
Yes, I am fully aware of that. What I am saying is that you know what the state with ##j_z = 1/2## and ##j = 3/2## is, since you have already computed the states with ##j = 3/2##. The state you are searching for must be orthogonal to this.
 
Orodruin said:
Yes, I am fully aware of that. What I am saying is that you know what the state with ##j_z = 1/2## and ##j = 3/2## is, since you have already computed the states with ##j = 3/2##. The state you are searching for must be orthogonal to this.

Oh! I forgot that. I don't know why they need to be orthogonal though, but I guess that's a discussion for another thread. I'll see if I can solve it having that in mind!

Thank you Orodruin!
 
DataGG said:
I don't know why they need to be orthogonal though

What can you say about the operator ##\hat J = \hat L + \hat S##?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top