Adiabatic compression

  • Thread starter ewang
  • Start date
  • #1
4
0
Homework Statement:
Find the work done by the gas (or on the gas) for an adiabatic process starting at V = 0.024 m^3 and 101325 Pa and ending at 0.0082 m^3 and 607950 Pa. The working gas is helium
Relevant Equations:
Work for adiabatic = area under pV diagram
p1V1^gamma = p2V2^gamma
This is a relatively simple problem, but I'm not getting the right answer. For adiabatic compression, work on gas is positive, since work on gas = ΔEth and the adiabatic process moves from a lower isotherm to a higher one. Integrating for work gives:
pV * (Vf(1 - gamma) - Vi(1 - gamma))/(1-gamma)
I believe this is correct, but when I plug in the numbers, I'm getting a negative number:
101325 Pa * 0.024 m3 * ((0.0082 m3)1 - 1.67 - (0.024 m3)1 - 1.67)/(1 - 1.67)
= -3823.6 J
 

Answers and Replies

  • #2
4
0
Homework Statement:: Find the work done by the gas (or on the gas) for an adiabatic process starting at V = 0.024 m^3 and 101325 Pa and ending at 0.0082 m^3 and 607950 Pa. The working gas is helium
Relevant Equations:: Work for adiabatic = area under pV diagram
p1V1^gamma = p2V2^gamma

This is a relatively simple problem, but I'm not getting the right answer. For adiabatic compression, work on gas is positive, since work on gas = ΔEth and the adiabatic process moves from a lower isotherm to a higher one. Integrating for work gives:
pV * (Vf(1 - gamma) - Vi(1 - gamma))/(1-gamma)
I believe this is correct, but when I plug in the numbers, I'm getting a negative number:
101325 Pa * 0.024 m3 * ((0.0082 m3)1 - 1.67 - (0.024 m3)1 - 1.67)/(1 - 1.67)
= -3823.6 J

Nevermind, work is negative integral oops. I was staring at this for the longest time.
 
  • #3
The standard thermodynamics convention of signs is the Clausius convention
ΔU = Q - W
the variation of internal energy = Heat added to the system - Work done

Thus when the gas expands we have positive work
 
  • #4
rude man
Homework Helper
Insights Author
Gold Member
7,972
836
Homework Statement:: Find the work done by the gas (or on the gas) for an adiabatic process starting at V = 0.024 m^3 and 101325 Pa and ending at 0.0082 m^3 and 607950 Pa. The working gas is helium
Relevant Equations:: Work for adiabatic = area under pV diagram
p1V1^gamma = p2V2^gamma

For adiabatic compression, work on gas is positive
Right. work done BY gas is negative. The 1st law is usually written ## dU = \delta Q - p dV ## in physics.
 

Related Threads on Adiabatic compression

  • Last Post
Replies
2
Views
3K
  • Last Post
Replies
13
Views
3K
Replies
2
Views
4K
  • Last Post
Replies
8
Views
613
  • Last Post
Replies
2
Views
12K
  • Last Post
Replies
17
Views
767
Replies
6
Views
8K
Replies
2
Views
14K
Replies
1
Views
605
Replies
60
Views
4K
Top