Adsolute and conditional convergence of alternating series

blursotong
Messages
15
Reaction score
0
i have a question regarding adsolute and conditional convergence of alternating series.

- i know that summation of [ tan(pi/n) ] diverge, but how do we proof it converge conditionally? (ie, (-1)^n tan(pi/n) ]

can Leibiniz's theorem be used in this case? but tan(pi/2) is infinite?

any help is appreciated. =D
 
Physics news on Phys.org
If you write it as sum n=3 to infinity then you can use the alternating series test. If the series includes n=2 then it would be undefined.
 
so alternating series of tan(pi/n) converge conditionally for n>3 only ?
for n>0 it is diverge?
 
Conditional convergence of an alternating series means that it converges but if you take the absolute value it diverges?
 
blursotong said:
so alternating series of tan(pi/n) converge conditionally for n>3 only ?
for n>0 it is diverge?

Maybe. Read the fine print in the definition and consult a lawyer. I would prefer to call the case n>0 undefined rather than divergent.
 
dacruick said:
Conditional convergence of an alternating series means that it converges but if you take the absolute value it diverges?

Well, yes.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top