1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Featured A Advanced Math Problem of the Week 9/14/2017

  1. Sep 14, 2017 #1
    Here is this week's advanced math problem of the week. We have several members who will check solutions, but we also welcome the community in general to step in. We also encourage finding different methods to the solution. If one has been found, see if there is another way. Occasionally there will be prizes for extraordinary or clever methods.

    Prove that if ##n > 0##, an even map between ##n##-spheres has even homological degree.

    (PotW thanks to our friends at MHB)
     
  2. jcsd
  3. Sep 18, 2017 #2
    PF T-Shirt to the member that solves this!
     
  4. Sep 18, 2017 #3
    Let ##f:S^n\to S^n## be even, i.e. ##f(x)=f(-x)## for all ##x\in S^n##. This condition means that ##f## factors through the quotient map ##p:S^n\to\mathbb{RP}^n## (explicitly, we can write ##f=g\circ p## for a continuous map ##g:\mathbb{RP}^n\to S^n##).

    If ##n## is odd, ##\mathbb{RP}^n## is orientable and the quotient map ##p## has homological degree ##2## (since it is a local homeomorphism and is 2:1). Degrees multiply with composition, so ##\deg(f)## is even.

    If ##n## is even (and positive), then ##\mathbb{RP}^n## isn't orientable, so ##H_n(\mathbb{RP}^n)\cong\mathbb{Z}/2##. We can still factor the map ##f_*: H_n(S^n)\to H_n(S^n)## as ##H_n(S^n)\xrightarrow{p_*} H_n(\mathbb{RP}^n)\xrightarrow{g_*} H_n(S^n)##. The only homomorphism ##\mathbb{Z}/2\to\mathbb{Z}## is the trivial one, so ##g_*=0## and ##\deg(f)=0## is even in this case too.

    All coefficients are in ##\mathbb{Z}##.
     
    Last edited: Sep 18, 2017
  5. Sep 18, 2017 #4

    lavinia

    User Avatar
    Science Advisor
    Gold Member

    Note that if ##f## is smooth then the inverse image of any regular value has an even number of points in it since for each point in the inverse image its antipode is also in the inverse image. This means that the homology degree of the map is even.
     
    Last edited: Sep 18, 2017
  6. Sep 18, 2017 #5

    lavinia

    User Avatar
    Science Advisor
    Gold Member

    The top integer homology of any even dimensional real projective space - in fact of any compact non-orientable manifold without boundary- is zero - not Z/2. You could use Z/2 if you used integer cohomology instead. But zero works just as well in your argument
    .
     
    Last edited: Sep 18, 2017
  7. Sep 18, 2017 #6
    Thanks, of course you're right.
     
  8. Sep 18, 2017 #7

    lavinia

    User Avatar
    Science Advisor
    Gold Member

    @Infrared An equivalent way to state your argument for the even dimensional case is to observe that the antipodal map on an even dimensional sphere has degree negative one So if ##f= f \circ A## then its degree must be its own negative.
     
    Last edited: Sep 18, 2017
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Advanced Math Problem of the Week 9/14/2017
Loading...