Airplane Dropping a Package Relative Motion

AI Thread Summary
The discussion revolves around a physics problem involving a Red Cross airplane dropping a package from a height of 350 m while traveling at 80.0 m/s. The package is released 2900 m away from a hay pile, with an additional westward velocity of 3 m/s relative to the plane. Participants emphasize the importance of focusing on relevant information and applying the appropriate equations of motion to determine the time until the package hits the ground. The initial confusion is resolved as one participant realizes they have all the necessary information to solve the problem. The thread highlights the significance of clear problem analysis in physics.
DanielleG
Messages
17
Reaction score
0

Homework Statement



A Red Cross airplane is traveling horizontally east at velocity v_0 = 80.0 m/s and height h = 350 m above the ground. The plane carries emergency supplies for a village inaccessible by road. The plane will drop the package (without a parachute) into a pile of soft hay prepared on the ground to cushion the impact. The pilot looks at her instruments and notices the plane is a horizontal distance $d = 2900$ m from the hay pile. A time t_1 later, the copilot pushes the package out of the plane, with a westward horizontal velocity v_s = 3 m/s relative to the plane. It lands exactly on the hay pile. From the instant the package leaves the plane, how much time elapses till it hits the hay pile? (Neglect air resistance.)

Homework Equations



$$y_f=y_i+v_yt-\frac{1}{2}gt^2$$

Where $$g=9.8\frac{m}{s^2}$$, y_f is the final height, and y_i, the initial height

3. The Attempt at a Solution


I have drawn a diagram (see attached file) but I am unsure of where to start. If anyone had any advice for where to begin, that would be great!
 

Attachments

  • 12042182_10153629776792505_1005054529_n.jpg
    12042182_10153629776792505_1005054529_n.jpg
    18.9 KB · Views: 544
Physics news on Phys.org
DanielleG said:
height h = 350 m

DanielleG said:
(Neglect air resistance.)

DanielleG said:
y_f is the final height, and y_i, the initial height
Read the problem; discard the irrelevant information; solve.
 
Bystander said:
Read the problem; discard the irrelevant information; solve.
Thanks, right after I posted this I realized I had all the necessary information!
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Back
Top