How Do You Simplify Complex Algebraic Expressions?

  • Thread starter Thread starter nameVoid
  • Start date Start date
  • Tags Tags
    Expression
nameVoid
Messages
238
Reaction score
0
%7D)%7D%7B%5Csqrt%7Ba%7D-%5Csqrt%7Bx%7D%7D%7D%7B(%5Csqrt%7Ba%7D%2B1)%5E3-a%5Csqrt%7Ba%7D%2B2%7D).jpg


i can take this down to

Bx%7D)%7D%7B(%5Csqrt%7Ba%7D-%5Csqrt%7Bx%7D)%5B(%5Csqrt%7Ba%7D%2B1)%5E3-a%5E%7B1%2F3%7D%2B2%5D%7D.jpg




 
Physics news on Phys.org
So you are trying to simplify the expression, I take it?

{(\sqrt{a} + 1)^2 - {a-\sqrt {ax} \over \sqrt a - \sqrt x} \over (\sqrt a + 1)^3 - a \sqrt a + 2}

= {(a + 2 \sqrt a + 1)(\sqrt a - \sqrt x) - (a - \sqrt {ax}) \over (\sqrt a - \sqrt x)((\sqrt a + 1)^3 - a \sqrt a + 2)}

= {a \sqrt a - a \sqrt x +2a - 2 \sqrt a \sqrt x + \sqrt a - \sqrt x - a + \sqrt{ax} \over (\sqrt a - \sqrt x)(a^{3 \over 2} + 3a + 3 \sqrt a + 1 - a^{3 \over 2} + 2)}

And then we group like terms and can cancel some things out

={a \sqrt a + a + \sqrt a - a \sqrt x - \sqrt{ax} - \sqrt x \over 3(a \sqrt a + a + \sqrt a - a \sqrt x - \sqrt a \sqrt x - \sqrt x}

= {1 \over 3}
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top