- #1
limarodessa
- 51
- 0
What are the rules of analytical – not numerical (matrix) entry of bra-ket convertion – operations on bra-ket, in particular – tensor product ?
For example – how in analytical form to do this:
U[itex]|\Psi\rangle[/itex]
where:
U=I[itex]\otimes[/itex]I
I=[itex]|0\rangle\langle0|+|1\rangle\langle1|[/itex]
[itex]\Psi=\frac{1}{\sqrt{2}}\left( {|0\rangle\otimes|0\rangle+|1\rangle\otimes|1 \rangle} \right)[/itex]
Also – is it possible to do it in the analytical (not numerical) form in the package “Wolfram Mathematica” ? [itex] [/itex]
For example – how in analytical form to do this:
U[itex]|\Psi\rangle[/itex]
where:
U=I[itex]\otimes[/itex]I
I=[itex]|0\rangle\langle0|+|1\rangle\langle1|[/itex]
[itex]\Psi=\frac{1}{\sqrt{2}}\left( {|0\rangle\otimes|0\rangle+|1\rangle\otimes|1 \rangle} \right)[/itex]
Also – is it possible to do it in the analytical (not numerical) form in the package “Wolfram Mathematica” ? [itex] [/itex]