Analytical continuation free energy

AI Thread Summary
The discussion centers on Langer's analytical continuation technique for a specific integral involving a parameter H, particularly focusing on how to analytically continue the function for negative values of H. The integral in question is analyzed using saddle point methods, revealing critical points at 0 and -2/3. The author expresses confusion about the rationale behind rotating the contour in the complex plane while maintaining the integral's form. It is suggested that the analytical continuation process is a mathematical procedure, and the author is encouraged to seek further insights from specialized math forums. The conversation highlights the complexities of contour integration and the importance of understanding the underlying principles of analytical continuation.
muzialis
Messages
156
Reaction score
1
Hi All,

reading a paper by Langer (Theory of the Condensation Point, Annals of Physics 41, 108-157, 1967), I came across an analytical continuation technique which I do not understand (would like to upload the paper PDF but I am not so sure this is allowed).
Essentially, he deals with the integral
##\int_{0} ^{\infty} \mathrm{d} t \quad t^2 e^ {-\frac{A}{H}(t^3+t^2)}##
His aim is to analytically continue this function for negative ##H##, over the singularity at ##0##..

He starts by considering the real part of ##t^2 + t^3##, showing two saddle point at ##0## and ##-2/3##.
Then he says, let us stat with positive, real only H and move it around the origin in the complex plan, anticlockwise (the same will be repeated clockwise).
The "array of three valleys and mountains, given by ##\frac{-t^3}{H^2}## for large ##t##, also moves anticlockwise. And as they say, so far, so good, but now the bit that puzzles me.
"The analytical continuation of ##f(H)## is obtained, according to a standard and rigorous construction, by rotating the contour ##C_1##, going from ##0## to infinity on the real axis, so that it always remains at the bottom of its original valley, and a picture shows the countour ##C_2## going from ##0## to ##-2/3## along the negative real axis, and then up tp the top left along one of the "valleys". Once, he adds, ##H## is moved to ##H_2 = e^{i \pi} H##, the integrand has returned to its original form, but ##f(H_2)## is obtained integrating along the rotated countour ##C_2##. I understand that the integrand will return to its original form, but why rotating the contour?

If anybody had a hint, that would be so appreciated, thanks.
 
Physics news on Phys.org
I suggest you try one of the math forums. Analytic continuation is a math procedure.
 
Thanks for the advice, will do so.
 
So I know that electrons are fundamental, there's no 'material' that makes them up, it's like talking about a colour itself rather than a car or a flower. Now protons and neutrons and quarks and whatever other stuff is there fundamentally, I want someone to kind of teach me these, I have a lot of questions that books might not give the answer in the way I understand. Thanks

Similar threads

Back
Top