Analytical solution for bending stiffness of tapered tube

AI Thread Summary
The discussion focuses on deriving an analytical formula for the bending stiffness of a cantilevered isotropic tapered tube under a point load. The Euler-Bernoulli beam equation is referenced, emphasizing the relationship between deflection, bending moment, modulus of elasticity, and the second moment of area. It is suggested that if the second moment of area, I(x), can be expressed as a function of distance from the fixed end, integration of the moment equation could yield the bending stiffness. However, there is uncertainty about the feasibility of obtaining an analytical solution, with a numerical approach being recommended as more practical. The conversation highlights the complexity involved in deriving a common formula for bending stiffness at various distances along the tapered tube.
Sud89
Messages
4
Reaction score
0
How to derive the formula to find the bending stiffness of an isotropic tapered tube which is cantilevered with a point load applied at the free end?
 
Engineering news on Phys.org
I'm not sure that there is an analytical formula.

You can always go back to first principles and the Euler-Bernoulli beam equation.

If w(x) = the deflection of the beam at a distance x from the fixed end, then

M(x) = -E I(x) d2w(x)/dx2

where M(x) is the bending moment,
E is the modulus of elasticity, and
I(x) is the second moment of area of the beam cross section at a distance x from the fixed end

For this beam, at the fixed end both the slope and deflection will be zero.

If you can write I(x) as a function of x, you might be able to integrate the moment equation twice and apply the initial conditions to determine the constants of integration. There's no guarantee that the resulting integral can be determined analytically, although a numerical solution would probably be more practical.
 
SteamKing said:
I'm not sure that there is an analytical formula.

You can always go back to first principles and the Euler-Bernoulli beam equation.

If w(x) = the deflection of the beam at a distance x from the fixed end, then

M(x) = -E I(x) d2w(x)/dx2

where M(x) is the bending moment,
E is the modulus of elasticity, and
I(x) is the second moment of area of the beam cross section at a distance x from the fixed end

For this beam, at the fixed end both the slope and deflection will be zero.

If you can write I(x) as a function of x, you might be able to integrate the moment equation twice and apply the initial conditions to determine the constants of integration. There's no guarantee that the resulting integral can be determined analytically, although a numerical solution would probably be more practical.
upload_2014-11-22_2-29-23.png

This is the model of the tube that I have. I need to derive a common formula in order to find the bending stiffness at different distances. say x=1,2,3..
 
At x = 0, let the external radius of the tube be RO and the internal radius be RI

For the values of RO and RI at a distance x from the fixed end then,

RO(x) = RO - x * tan α
RI (x) = RI - x * tan α

The second moment of area of the tube is then

I(x) = (π/4)*[RO(x)4 - RI(x)4]

and the bending stiffness = E I(x)

If you want to substitute the first expressions for RO(x) and RI(x) into I(x), well, it's probably a lot of algebra to clean up.
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'What's the most likely cause for this carbon seal crack?'
We have a molded carbon graphite seal that is used in an inline axial piston, variable displacement hydraulic pump. One of our customers reported that, when using the “A” parts in the past, they only needed to replace them due to normal wear. However, after switching to our parts, the replacement cycle seems to be much shorter due to “broken” or “cracked” failures. This issue was identified after hydraulic fluid leakage was observed. According to their records, the same problem has occurred...
Back
Top