Angle between curve and sphere

autre
Messages
116
Reaction score
0
I need to find the angle between a curve x^2 + y^2 =1, z = sqrt(2)x/y and a sphere z^2 + y^2 + z^2 = 1. I found two points of intersection, (0,1,0) and (0,-1,0), so at each of these points I assume that there's a tangent line to the curve and a tangent plane to the sphere. Then I'm guessing I'd find the angle between the direction vector of the tangent line to the curve and the normal vector of the tangent plane. Am I on the right track?

I have the direction vector of the tangent line to the curve at (0,1,0) as <1, 0, sqrt(2)> and at (0,-1,0) as <-1,0,-sqrt(2)>. I'm not sure where to go from here.
 
Physics news on Phys.org
autre said:
I need to find the angle between a curve x^2 + y^2 =1, z = sqrt(2)x/y and a sphere z^2 + y^2 + z^2 = 1. I found two points of intersection, (0,1,0) and (0,-1,0), so at each of these points I assume that there's a tangent line to the curve and a tangent plane to the sphere. Then I'm guessing I'd find the angle between the direction vector of the tangent line to the curve and the normal vector of the tangent plane. Am I on the right track?

Yes, that's good.

I have the direction vector of the tangent line to the curve at (0,1,0) as <1, 0, sqrt(2)> and at (0,-1,0) as <-1,0,-sqrt(2)>. I'm not sure where to go from here.

Well, find the tangent plane to the sphere at the points (0,1,0) and (0,-1,0).
 
Oh, so that'll just be a 90 degree angle in both cases, since <+-1, 0, +-sqrt(2)>.<0,+-2,0> = 0 so arccos0 = pi/2.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top