Angular momentum Homework Problem

AI Thread Summary
The discussion revolves around solving angular momentum and torque problems related to a cylindrical grinding wheel and an Atwood machine. For the grinding wheel, the correct angular momentum is calculated as 6.08 kg*m^2/s, but there is confusion regarding the torque required to stop it in 6.50 seconds, with a calculated torque of 0.9347 N*m not being accepted by the system. The user expresses uncertainty about the calculations and seeks clarification on potential errors. Additionally, they present a new problem involving an Atwood machine with two masses and a pulley, asking for help in determining the acceleration of the masses and the impact of ignoring the pulley’s moment of inertia. The thread highlights common challenges in applying physics concepts to homework problems.
AstroturfHead
Messages
6
Reaction score
0
This is a problem I'm having a world of problem with:

A. What is the angular momentum of a 2.56 kg uniform cylindrical grinding wheel of radius 17.5 cm when rotating at 1480 rpm?

Correct: 6.08 kg*m^2/s

B. How much torque is required to stop it in 6.50 s?

So after 5 tries, I get that Torque = Moment of Inertia * Alpha.

Alpha = Delta (w)/ Delta (t)
Then I = 1/2*m*r^2
and I get .9347 N*m, but the computer does not. Any suggestions as to what I am doing wrong?
 
Last edited by a moderator:
Physics news on Phys.org
U've given it 4 sign.digits cf.3 before...:-p

If A is correct (manipulating units),then B is correct,as well.I don't c what it could be.

Daniel.
 
Well I have lot of these homework questions. Heres another one that I can't figure out.

An Atwood machine consists of two masses, m1 = 6.80 kg and m2 = 8.55 kg, connected by a cord that passes over a pulley free to rotate about a fixed axis

Then there's a picture but I don't know how to link to it. Its just 2 weights on the end of a string around a pully.

The pulley is a solid cylinder of radius R0 = 0.535 m and mass 0.771 kg. Determine the acceleration a of both masses. Ignore friction in the pulley bearing.

10. [1pt]
What percentage error in a would be made if the moment of inertia of the pulley were ignored? Do not enter units.

Any ideas on there either? I did the same kinda thing and said T = F*R=I*Alpha etc etc
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top