Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Angular velocity and rotation matrix

  1. Aug 17, 2011 #1
    Hello. Sorry for my English

    There are [itex]R[/itex] - rotation matrix (that performs transformation from associated coordinate system [itex]IE[/itex] to static coordinate system [itex]OI[/itex]) and [itex]\omega[/itex] - angular velocity. The matrix [itex]R[/itex] depends on parameters [itex]\xi[/itex] (for example, Euler angles). I need to express [itex]\omega[/itex] as function of [itex]\xi[/itex].

    Let [itex]r^e[/itex] - components of vector [itex]r[/itex] in the associated coordinate system: [itex]r=Rr^{e}[/itex] and [itex]r^{e}=R^{T}r[/itex]. Than variation of vector [itex]r[/itex]:
    [itex]\delta r=\sum_{i}\frac{\partial Rr^{e}}{\partial\xi_{i}}\delta\xi_{i}=[/itex] [itex]\sum_{i}\left(\frac{\partial R}{\partial\xi_{i}}\delta\xi_{i}\right)r^{e}=[/itex] [itex]\sum_{i}\left(\frac{\partial R}{\partial\xi_{i}}\delta\xi_{i}\right)R^{T}r[/itex]

    On the other hand if I rotate [itex]r[/itex] about [itex]l[/itex] on angle [itex]\Delta\varphi[/itex] then variation of [itex]r[/itex] equals: [itex]\delta r=\Delta\varphi\left[l\times r\right]=\delta\varphi\times r[/itex], where [itex]\delta\varphi = \Delta \varphi l[/itex].

    Comparing [itex]\delta r=\delta\varphi\times r[/itex] with [itex]\delta r=\sum_{i}\left(\frac{\partial R}{\partial\xi_{i}}\delta\xi_{i}\right)R^{T}r[/itex], we get the following expression for omega:
    [itex]\omega = \frac{\delta \varphi}{d t}[/itex]
    [itex]\left[\omega\times\right]=\left(\begin{array}{ccc}0 & -\omega_{3} & \omega_{2}\\
    \omega_{3} & 0 & -\omega_{1}\\
    -\omega_{2} & \omega_{1} & 0\end{array}\right)=\sum_{i}\left(\frac{\partial R}{\partial\xi_{i}}\dot{\xi_{i}}\right)R^{T}[/itex]

    Is it right?
     
  2. jcsd
  3. Aug 19, 2011 #2

    A.T.

    User Avatar
    Science Advisor
    Gold Member

  4. Aug 22, 2011 #3
    I found the answer on my question at http://en.wikipedia.org/wiki/Angular_velocity" [Broken] :
    But [itex]W[/itex] is not a tensor, [itex]W[/itex] is a pseudotensor: [itex]W_{ij} = e_{iwj} \omega_{w}[/itex].
     
    Last edited by a moderator: May 5, 2017
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook