JoshHolloway
- 221
- 0
y \prime = (cos^{2}x)(cos^{2}(2y))
\frac{dy}{dx} = \frac{1}{2} (cox(2x) + 1) \frac{1}{4}(cos(4y) + 1)
\frac{1}{cos(4y) + 1}dy \ = \ \frac{1}{8} (cos(2x) + 1)dx
\int \frac{1}{ \sqrt{cos(4y)}^{2} + 1}dy \ = \ \frac{1}{8} \int (cos(2x) + 1)dx
tan^{-1}(cos4y) \ = \ \frac{1}{8} \frac{1}{2} sin(2x) + \frac{1}{8} x + C
tan[tan^{-1}(cos4y) \ = \ \frac{1}{16} sin(2x) + \frac{1}{8} x + C]
cos^{-1}[cos(4y) \ = \ tan( \frac{sin2x}{16} + \frac{x}{8} + C)]
y \ = \ \frac{1}{4} cos^{-1}[tan( \frac{sin2x}{16} + \frac{x}{8} + C)]
\frac{dy}{dx} = \frac{1}{2} (cox(2x) + 1) \frac{1}{4}(cos(4y) + 1)
\frac{1}{cos(4y) + 1}dy \ = \ \frac{1}{8} (cos(2x) + 1)dx
\int \frac{1}{ \sqrt{cos(4y)}^{2} + 1}dy \ = \ \frac{1}{8} \int (cos(2x) + 1)dx
tan^{-1}(cos4y) \ = \ \frac{1}{8} \frac{1}{2} sin(2x) + \frac{1}{8} x + C
tan[tan^{-1}(cos4y) \ = \ \frac{1}{16} sin(2x) + \frac{1}{8} x + C]
cos^{-1}[cos(4y) \ = \ tan( \frac{sin2x}{16} + \frac{x}{8} + C)]
y \ = \ \frac{1}{4} cos^{-1}[tan( \frac{sin2x}{16} + \frac{x}{8} + C)]
Last edited: