vorcil
- 395
- 0
Basically I need to know \int_0^h x\frac{1}{2\sqrt{hx}}dx
my working,
\frac{1}{2\sqrt{hx}} \int_0^h \frac{x}{\sqrt{x}}
,
how do i do this?,
\int \frac{1}{\sqrt{x}}
\int x^(\frac{-1}{2})
\frac{1}{\frac{-1}{2}+1} x^(\frac{-1}{2}+1)
\frac{x^\frac{1/2}}{\frac{1}{2}}
2x^\frac{1}{2}
but do i just multiply that by the anti derivative of x? since i want
\int_0^h \frac{x}{\sqrt{x}}
my working,
\frac{1}{2\sqrt{hx}} \int_0^h \frac{x}{\sqrt{x}}
,
how do i do this?,
\int \frac{1}{\sqrt{x}}
\int x^(\frac{-1}{2})
\frac{1}{\frac{-1}{2}+1} x^(\frac{-1}{2}+1)
\frac{x^\frac{1/2}}{\frac{1}{2}}
2x^\frac{1}{2}
but do i just multiply that by the anti derivative of x? since i want
\int_0^h \frac{x}{\sqrt{x}}