I Any equation that fits in this shape? (variable concavity)

  • I
  • Thread starter Thread starter mikejm
  • Start date Start date
  • Tags Tags
    Shape
mikejm
Messages
40
Reaction score
2
I'm working on an audio synthesis project and I need an equation that can create these lines:

equation.PNG


That is, I would like an equation that describes a line that always passes through (0,1) and (1,0), and has a single coefficient parameter that can be varied to create functions of intermediate concavity/convexity like the red line shown.

The concavity/convexity should be symmetric as if mirrored along the line of y=x between the boundaries of (0,1) and (1,0). Anything outside that range is irrelevant.

Is there an equation that can do this?
 

Attachments

  • equation.PNG
    equation.PNG
    10.6 KB · Views: 836
Last edited:
Mathematics news on Phys.org
If I set the center of circle to be (x,y) = (b,b) for b>=1, and then set the radius of the circle to cross through (1,0) and (0,1):
r = sqrt(bb+ (bb-1)) = sqrt(2bb - 1)
then the equation for the circle will be:
(x-b)^2 + (y-b)^2 = bb +(b-1)^2
xx-2xb+bb+yy-2yb+bb = 2bb-2b+1
xx-2xb+bb+yy-2yb+bb-2bb+2b-1 = 0
xx-2xb+yy-2yb+2b-1 = 0
y = (2b+/-sqrt(2bb-4(xx-2xb+2b-1)))/2
y = b+/-sqrt(bb-(xx-2xb+2b-1))

but we only want the bottom of the circle, so:
y = b-sqrt(bb-(xx-2xb+2b-1))
 
##(1-x)^a + (1-y)^a = 1## - this can be solved for y if you prefer that: ##y=1-(1-(1-x)^a)^{1/a}##

a=1 gives a straight line, a=2 gives a quarter-circle, larger a give something that passes closer to (0,0). It is always symmetric as you can see from the first equation.
Example curves.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top