Apparent Flux and number of stars

Jordan_Tusc
Messages
3
Reaction score
0
The stars in our Galaxy have luminosities ranging from $L_{\text{min}}$ to $L_{\text{max}}$. Suppose that the number of stars per unit volume with luminosities in the range of $L$, $L+dL$ is $n(L)dL$. The total number of stars per unit volume if clearly $$n = \int_{L_{min}}^{L_{max}} n(L)dL.$$ Show that the total number of stars with apparent flux $f \geq f_0$ is $$N(f \geq f_0) = \frac{A}{f_0^{3/2}}$$ and find $A$ in terms of $n(L)$.We have that the flux $f$, is given by $$f = \frac{L}{4 \pi r^2}.$$ Therefore, take $L_{min} = 4\pi r^2 f_0$ and $L_{max} = 4\pi r^2 f$. We thus have that $$N = \int_{4\pi r^2 f_0}^{4 \pi r^2 f} n(L) dL.$$ Is this on the right track?
 
Physics news on Phys.org
You are wrong in final equation.
\begin{equation}
N=n.A.l
\end{equation}
You know
\begin{equation}
n = \int_{L_{min}}^{L_{max}} n(L)dL.
\end{equation}
If we put this to first equation we get
\begin{equation}
N = \int_{L_{min}}^{L_{max}} n(L)A.LdL.
\end{equation}

Other equations are true, i think
 
Safakphysics said:
You are wrong in final equation.
\begin{equation}
N=n.A.l
\end{equation}
You know
\begin{equation}
n = \int_{L_{min}}^{L_{max}} n(L)dL.
\end{equation}
If we put this to first equation we get
\begin{equation}
N = \int_{L_{min}}^{L_{max}} n(L)A.LdL.
\end{equation}

Other equations are true, i think
Where did you determine that first equation from?

Also, do we therefore conclude that $$A = \frac{N}{\int_{L_{min}}^{L_{max}} L \cdot n(L) dL}?$$
 
In my equations A is area. In my equation
\begin{equation}
A=4.\pi.r^2=S
\end{equation}
I should have S for this for doesn't mixing the question provided and asked constant.
And also i had mistake in the above post
\begin{equation}
N=n.V
\end{equation}
where is V volume, n tota number of star per unit volume.
And you have to express n(L) depends on variables we know. But i didn't found these method i think in this problem there aren't enough knowledge to get this. This question from a textbook? If yes you may look up the issues maybe n(L) defined by in the textbook.
 
Last edited:
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top