Application of Newton's second law to a horizontal pulley

AI Thread Summary
The discussion clarifies the application of Newton's second law to a horizontal pulley system, emphasizing that static friction is a variable force, not fixed. The maximum static friction is defined by the equation μN, but the actual force can match the applied external force if it is less than this maximum. To maintain static equilibrium, the applied force must counterbalance the tension in the string, which is 20N in this case. The range of forces that can keep the system static is determined by the difference between the tension and the maximum static friction. Understanding these principles allows for a clearer grasp of how forces interact in this scenario.
ElectroMaster88
Messages
5
Reaction score
3
Homework Statement
Body A, which has a mass of 3 kg, is on a horizontal surface and is connected by a massless and frictionless string and pulley to body B, which is suspended in the air and has a mass of 2 kg. The coefficient of friction (static and kinetic) between body A and the horizontal surface is 0.2.
A horizontal force F is applied to body A to the left.
A. Calculate what the value of the force F should be in order for the frictional force between body A and the surface to be zero.
B. In what range of values should the force F be in order for the system to be in a static state? There are answers:
A. 20N
B. 14N ≤ F ≤ 26N
Relevant Equations
x=x0+v0t+at^2/2
v=v0+at
f=μ*N
N=mg
Newton's Second Law
I don't understand how to solve these, and I don't understand how an horizontal force can affect the friction force if it's defined by μ*N, and the additional force affect neither of those. I also don't understand how there is a range of possible forces that F can be to make the system static, if only one option can make the horizontal net force 0.
I am clearly missing something and I don't understand what.
 

Attachments

  • problem.png
    problem.png
    8.1 KB · Views: 121
Physics news on Phys.org
ElectroMaster88 said:
I am clearly missing something and I don't understand what.
Static friction is a variable reaction force. It is not a force with a fixed magnitude. The quantity ##\mu N## is the maximum possible force of static fiction. If the box is free from external forces, then the static friction acting on it is zero. If the net external force on the box is less than ##\mu N##, then the static friction force will have precisely the same magnitude as the new external force, but in the opposite direction.
 
  • Like
Likes berkeman and Lnewqban
I think I understood:
Because the tension of the string is 20N, to make the net external force on box A 0 (which will make static friction of 0), I need to apply 20N of force in the opposite direction, which is F.
So that's why the answer is 20N.

And because μN is the maximum possible force of static friction (which is in this case 6N), at minimum I need to apply 14N of force to the opposite direction (20-6=14), and at maximum 26N, which will make the same scenario like in the 14N but with switched sides.
So as long as the net external force on the box is less than μN, the system will stay static.
Have I understood it right?
 
  • Like
Likes Lnewqban and PeroK
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top