Applications of Integration - Work.

AI Thread Summary
The discussion centers on a calculus problem involving the application of integration to calculate the work done in pulling a bucket of water from a well. The problem specifies a bucket weighing 4 lb, filled with 40 lb of water, being pulled up at a rate of 2 ft/s while leaking water at 0.2 lb/s. The initial solution calculated the work done as 1600 ft*lb by summing the work to lift the bucket and the leaking water, but a second attempt yielded 3200 ft*lb using a different integral approach. The discussion also touches on the lack of prior physics knowledge and the instructor's limited coverage of the topic due to time constraints. Clarification on the correct method and solution is sought from the forum.
JohnRV5.1
Messages
8
Reaction score
0
I am currently taking CALC II in the summer. So far we have gone over Applications of Integration(area under the curve, solids of revolution) to Techniques of Integration (integration by parts, Trig substitution, Partial Fractions, IMproper Integrals, etc.) From all the problems I have encountered, only this one gives me trouble. It is the chapter on applications of Integration that pertains to work. Here is the problem and the solution I obtained, altough I am unsure I tackled the problem correctly:

Problem:
A bucket that weights 4 lb and a rope of negligible weight are used to draw water from a well that is 80 ft deep. The bucket is filled with 40 lb of water and is pulled up at a rate of 2 ft/s, but water leaks out of a hole in the bucket at a rate of 0.2 lb/s. Find the work done in pulling the bucket to the top of the well.

My Solution:
First I found the work required to lift the bucket byself to the top of the well.
I got Force = (4 lb)(80 ft) = 320 ft*lb

Then I obtained the work done in pulling the leaking water to the top of the well using integration.
I found the distance = x
The Force = (40 lb)/(80 ft) - (.2 lb/s)/(2 ft/s) = .5 lb/ft - .1lb/ft = .4 lb/ft or 2/5 lb/ft
therefor the force is = 2/5 dx or .4dx.
I set up the integral using the above info
= Integral from 0 to 80 of .4xdx
evaluating the integral I obtained 1280 ft*lb

So I summed up both the work required to lift the bucket to the top and the work required to lift the water to the top of the well: 1280 ft*lb + 320 ft*lb = Work = 1600 ft*lb! Am I correct

p.s. My calc instructor informed us that no work questions will be on the exam but he did assign homework for it. The problem was due to time constraints, the instructor was not able to lecture on the section on work. Plus I have never taken a single Physics class so I did not feel too confident with my solution.
Thank you for lending your time and efforts to help me.
 
Physics news on Phys.org
I attempted the problem a second time with a different approach and got 3200 ft*lb of work instead. This time I used the integral from 0 to 80 of
(40 - .1x)dx

Can anyone tell me if I obtained the right solution. BTW, sorry if your having difficulties reading my notation above. Help!
 
One way to do this question.
At time 't' what is the mass of water left in the bucket? It is 40 - 0.2t lb

The mass of the bucket is 4lb. So the total mass is 40 -0.2t + 4 = 44 - 0.2t lb.
now, by Newton's second law,

d(mv)/dt=F(net).

Therefore, mdv/dt+vdm/dt=F(net)

Now, dv/dt=0

so, vdm/dt=(T-mg)
where T is the force you apply to pull the bucket as a function of time.
So T= vdm/dt+mg.
T=(2)(-0.2) + (44-0.2t)(g) {Use the value of g in appropriate units}
and time taken to reach the top is h/v=(80)/(2)=40

So work done is
\int T.dx
Which is \int T.(vdt)
= \int T.(2)(dt) from t=0 to t=40
 
Last edited:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top