Are Sums and Differences of Eigenfunctions Also Eigenfunctions?

eit32
Messages
21
Reaction score
0
a) Consider a linear operator L with 2 different eigenvalues a1 and a2, with their corresponding eigenfunction f1 and f2. Is f1 + f2 also an eigenfunction of L? If so, what eigenvalue of L does it correspond to? If not, why not?

b) Answer the same question as in part (a) but for the difference of the 2 functions;
f1-f2.
 
Physics news on Phys.org
eit32 said:
a) Consider a linear operator L with 2 different eigenvalues a1 and a2, with their corresponding eigenfunction f1 and f2. Is f1 + f2 also an eigenfunction of L? If so, what eigenvalue of L does it correspond to? If not, why not?

b) Answer the same question as in part (a) but for the difference of the 2 functions;
f1-f2.

Let's see:

L(f1 + f2) = L(f1) + L(f2) (because L is linear)

= a1 f1 + a2 f2

If f1 + f2 is an eigenfunction then we must have:

L(f1 + f2) = b (f1 + f2)

for some eigenvalue b. This means that:

a1 f1 + a2 f2 = b f1 + b f2 ------>

(a1 - b) f1 + (a2 - b) f2 = 0

which means that f1 and f2 are proportional to each other. However, that is impossible because then the iegenvalues a1 and a2 have to bethe same. So, we arrive at a contradiction and f1 + f2 cannot be an eigenfunction of L.

Part b) minus f2 is also an eigenfunction with eigenvalue a2. So, the result of a) also applies in this case.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top