azatkgz
- 182
- 0
This question is quite hard for me.
Find the area between the curve y=e^{-x}\left|sinx\right| and the straight line y=0 for x\geq 0
\int_{0}^{\infty}e^{-x}\left|sinx\right|dx=-e^{-x}\left|sinx\right|+\int_{0}^{\infty}e^{-x}\left|cosx\right|dx
=-e^{-x}\left|sinx\right|-e^{-x}\left|cosx\right|-\int_{0}^{\infty}e^{-x}\left|sinx\right|dx
\int_{0}^{\infty}e^{-x}\left|sinx\right|dx=\frac{-e^{-x}\left|sinx\right|-e^{-x}\left|cosx\right|}{2}
Homework Statement
Find the area between the curve y=e^{-x}\left|sinx\right| and the straight line y=0 for x\geq 0
The Attempt at a Solution
\int_{0}^{\infty}e^{-x}\left|sinx\right|dx=-e^{-x}\left|sinx\right|+\int_{0}^{\infty}e^{-x}\left|cosx\right|dx
=-e^{-x}\left|sinx\right|-e^{-x}\left|cosx\right|-\int_{0}^{\infty}e^{-x}\left|sinx\right|dx
\int_{0}^{\infty}e^{-x}\left|sinx\right|dx=\frac{-e^{-x}\left|sinx\right|-e^{-x}\left|cosx\right|}{2}