Astrophysics: Calculating the circumference of an ellipse

AI Thread Summary
The discussion focuses on calculating the circumference of an ellipse, specifically in relation to Earth's orbit around the sun. The user initially misapplies the formula for circumference by incorrectly defining the semi-major and semi-minor axes. Feedback highlights that the correct formula involves the square root of the difference between the squares of the axes, not their sum. The semi-major axis is correctly identified as the average of the closest and farthest distances from the sun, while the semi-minor axis is independent and requires additional information. Understanding the eccentricity of the ellipse is emphasized as crucial for accurate circumference calculations.
Andy1200
Messages
2
Reaction score
0
Homework Statement
I'm new to this website. Could someone explain how to solve this equation, its the formula for an ellipse circumference :
Relevant Equations
P = 2a(pi){1-(1/2)^2[(sqrta^2b^2)/a]^2- [(1*3)/(2*4)]^2{[(sqrta^2b^2)/a]/3}^4.....}
Substituting :
a = (9.15x10^7 mi)+(9.45x10^7mi) = 1.86x10^8 mi
b = ( a/2 ) = 9.3x10^7 mi

For this, I used six terms and got :

1.075x10^9 miles

Is my math wrong?;
 
Physics news on Phys.org
There seem to be a few mistakes in your formula. If I've got it right, "sqrta^2b^2" should be sqrt(a^2 - b^2). (Maybe just a typo on your part.)
{[(sqrta^2b^2)/a]/3}^4 should be {[(sqrt(a^2-b^2))/a]^4}/3
And I don't know where you're getting your a and b from. In this formula, a is the semi-major axis and b the semi-minor axis. Not (as you are using?) the sum and average of these. That's why you're getting an answer about a factor of 2 high.
 
Thanks for the feedback. Yes, I'm still learning how to type formulas, but what you wrote is what I meant. I was using the formula to find the length of Earth's orbit around the sun w/out using Google. My apologies on the a and b numbers. I've found it extremely difficult to find the semi-minor axis of the orbit, given that the farthest and closest distances make a 180-degree angle.
 
That's because the sun is at a focus of the ellipse, not the centre. In this case, the semi-major axis is the average of the closest and farthest distances. You can't get the semi-minor axis from these (it is independently variable), but you should be able to find it easily, or the value of the eccentricity, from which you can work it out, on the internet. (Actually the eccentricity is all you need for the circumference equation, if you have the semi-major axis.)
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top