Atomizer Design Challenge? (Bernoulli's Principle)

AI Thread Summary
The discussion revolves around the application of Bernoulli's principle in atomizer design, specifically questioning why air does not simply bypass liquid in a system with a high-pressure air line and a liquid inlet. The user notes that despite a larger diameter liquid inlet tube, the air can still induce suction, suggesting that the design may require specific configurations to achieve this effect. They explore the possibility of a valve in the liquid line that directs air through the nozzle, creating a pressure differential that allows for liquid suction. Through experimentation, they observed that while high-pressure air can displace liquid, certain configurations can temporarily create suction. The conversation highlights the complexities of nozzle design and the need for industry standards in achieving effective atomization.
Grayfox
Messages
20
Reaction score
0
I understand why liquid is sucked into a tube of flowing air with a constricted end due to Bernoulli's principle, what puzzles me is why the air doesn't just take the path of least resistance instead of inducing liquid suction (see attached image). For example, if a 1/4 inch line at 30 psi has a 1 mm nozzle outlet, and a 2 mm line dunked in liquid somewhere along it, why doesn't the high pressure air just take the path of least resistance and bubble through the liquid? My guess would be the designers would have to make the diameter of the liquid line smaller than that of the nozzle to avoid this, but every cologne bottle I've looked at has a larger diameter liquid inlet tube than outlet nozzle. What am I missing here?
 

Attachments

  • Typical Atomizer.JPG
    Typical Atomizer.JPG
    4.9 KB · Views: 1,460
Engineering news on Phys.org
The air would have to displace the liquid, which would be more resistive than just going through the tube.
 
No not necessarily, especially in my example, the pressure head alone would have to be immense to overpower 30 psi, maybe something on the order of a 4 story building to accomplish that.
 
i think that it is more likely that the liquid line is attached all the way at the nozzle...the way i think of it is like, there is a high pressure regime starting from the pump to the nozzle, and a low pressure , high velocity regime beyond the nozzle, and the liquid line is connected to this side of the nozzlethe other possibility i can think of is that there is a valve in the liquid line, forcing the air to exit via the nozzle, and when sufficient velocity and pressure drop has built up, the liquid will be sucked into the airstream and out of the nozzle

but I am not a physicist so i could be wrong on both counts
 
Those are some interesting design possibilities carmatic that are very plausible! Now I just would like know which one is the industry standard. I have since built the scenario I described and sure enough the high pressure air displaced the liquid, BUT, there was a configuration that temporarily induced suction from tinkering with the liquid and air valves! It was hard to maintain though and now I'm even more curious as to what the best nozzle-suction design is.
 
Hi all, I have a question. So from the derivation of the Isentropic process relationship PV^gamma = constant, there is a step dW = PdV, which can only be said for quasi-equilibrium (or reversible) processes. As such I believe PV^gamma = constant (and the family of equations) should not be applicable to just adiabatic processes? Ie, it should be applicable only for adiabatic + reversible = isentropic processes? However, I've seen couple of online notes/books, and...
I have an engine that uses a dry sump oiling system. The oil collection pan has three AN fittings to use for scavenging. Two of the fittings are approximately on the same level, the third is about 1/2 to 3/4 inch higher than the other two. The system ran for years with no problem using a three stage pump (one pressure and two scavenge stages). The two scavenge stages were connected at times to any two of the three AN fittings on the tank. Recently I tried an upgrade to a four stage pump...
Back
Top