Autocorrelation of Uniformly Distributed Random Variable in the Interval (0,T)

  • Thread starter Thread starter wildman
  • Start date Start date
  • Tags Tags
    Integration Unit
wildman
Messages
29
Reaction score
4

Homework Statement


The random variable C is uniform in the interval (0,T). Find the autocorrelation
R_x(t_1,t_2) if X(t) = U(t-C) where U is a unit step function.

Homework Equations


The Attempt at a Solution



R_x (t_1,t_2) = \int_{-\infty}^{\infty} U(t_1-c) U(t_2-c) f(c) dc

R_x (t_1,t_2) = \frac{1}{T}\int_0^T U(t_1-c) U(t_2-c) dc

I get stuck here. How do you integrate two shifted unit step functions?
 
Last edited:
Physics news on Phys.org
By first thinking about them :smile:
Divide the interval into three parts (assuming t1 < t2)
  1. c < t1
  2. t1 < c < t2
  3. t2 < c
On each of these, what are the values of the step functions? What is their product? Now split the integral and do each part separately.
 
Oh yeah, THANKS!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top