DivGradCurl
- 364
- 0
Consider the autonomous differential equation that follows
\frac{dy}{dt} = e^y - 1, \qquad -\infty < y_0 < \infty \mbox{.}
I'm supposed to plot f(y) versus y, and determine the critical (equilibrium) points, and classify each one as asymptotically stable or unstable. Anyhow, you can find my plot at
http://mygraph.cjb.net/
which gives
y_0 < 0 \Longrightarrow \left\{ \begin{array}{ll} y^{\prime} < 0 & \mbox{(y is decreasing),} \\ y^{\prime \prime} < 0 & \mbox{(y is concave down),} \end{array} \right.
and
y_0 > 0 \Longrightarrow \left\{ \begin{array}{ll} y^{\prime} > 0 & \mbox{(y is increasing),} \\ y^{\prime \prime} > 0 & \mbox{(y is concave up).} \end{array} \right.
However, I picture the critical point y = \phi (t) = 0 to be semistable. The book says it is unstable, but I really can't find my mistake.
Any help is highly appreciated.
\frac{dy}{dt} = e^y - 1, \qquad -\infty < y_0 < \infty \mbox{.}
I'm supposed to plot f(y) versus y, and determine the critical (equilibrium) points, and classify each one as asymptotically stable or unstable. Anyhow, you can find my plot at
http://mygraph.cjb.net/
which gives
y_0 < 0 \Longrightarrow \left\{ \begin{array}{ll} y^{\prime} < 0 & \mbox{(y is decreasing),} \\ y^{\prime \prime} < 0 & \mbox{(y is concave down),} \end{array} \right.
and
y_0 > 0 \Longrightarrow \left\{ \begin{array}{ll} y^{\prime} > 0 & \mbox{(y is increasing),} \\ y^{\prime \prime} > 0 & \mbox{(y is concave up).} \end{array} \right.
However, I picture the critical point y = \phi (t) = 0 to be semistable. The book says it is unstable, but I really can't find my mistake.
Any help is highly appreciated.
Last edited: